Parts of this file are copied and modified from the Coq Demos
of the lecture Semantics at Saarland University
http://www.ps.uni-saarland.de/courses/sem-ws17/confluence.v
Set Implicit Arguments.
Require Import Morphisms FinFun Base.
Notation "R <<= S" := (forall x y, R x y -> S x y) (at level 70).
Notation "R === S" := (R <<= S /\ S <<= R) (at level 70).
Section ClosureRelations.
Variables (X: Type) (R: X -> X -> Prop).
Implicit Types x y z : X.
Definition functional := forall x y z, R x y -> R x z -> y = z.
Inductive star : X -> X -> Prop :=
| starRefl x : star x x
| starStep x x' y : R x x' -> star x' y -> star x y.
Inductive plus : X -> X -> Prop :=
| plusSingle x y: R x y -> plus x y
| plusStep x x' y: R x x' -> plus x' y -> plus x y.
Inductive counted : nat -> X -> X -> Prop :=
| countedRefl x: counted 0 x x
| countedStep x x' y n: R x x' -> counted n x' y -> counted (S n) x y.
Inductive sym: X -> X -> Prop :=
| symId x y: R x y -> sym x y
| symInv x y: R y x -> sym x y.
Hint Constructors star plus counted.
Lemma star_trans x y z :
star x y -> star y z -> star x z.
Proof.
induction 1; eauto.
Qed.
Lemma plus_trans x y z :
plus x y -> plus y z -> plus x z.
Proof.
induction 1; eauto.
Qed.
Fact counted_trans x y z m n:
counted m x y -> counted n y z -> counted (m + n) x z.
Proof.
induction 1; cbn; eauto.
Qed.
Fact star_exp :
R <<= star.
Proof.
eauto.
Qed.
Fact plus_exp :
R <<= plus.
Proof.
eauto.
Qed.
Fact counted_exp :
R === counted 1.
Proof.
split; eauto.
intros x y H; inv H; inv H2; eauto.
Qed.
Lemma plus_star : plus <<= star.
Proof.
induction 1; eauto.
Qed.
Lemma plus_destruct x y: plus x y <-> exists2 x', (R x x') & (star x' y).
Proof.
split.
- induction 1; eauto.
destruct IHplus; eexists; eauto.
- intros [? H1 H2]; revert x H1; induction H2; eauto.
Qed.
Lemma step_star_plus x y z:
R x y -> star y z -> plus x z.
Proof.
intros H1 H2; apply plus_destruct; eauto.
Qed.
Lemma plus_star_step x y z :
plus x y -> star y z -> plus x z.
Proof.
intros [] % plus_destruct ?. eapply plus_destruct.
eexists; eauto using star_trans.
Qed.
End ClosureRelations.
Definition equiv X (R: X -> X -> Prop) := star (sym R).
Hint Constructors star plus counted.
Hint Resolve star_trans plus_trans counted_trans star_exp plus_exp counted_exp.
Section Properties.
Variable X: Type.
Implicit Types (x y z : X) (R S : X -> X -> Prop).
Fact star_mono R S :
R <<= S -> star R <<= star S.
Proof.
intros H x y.
induction 1; eauto.
Qed.
Fact plus_mono R S :
R <<= S -> plus R <<= plus S.
Proof.
intros H x y.
induction 1; eauto.
Qed.
Fact star_closure R S :
PreOrder S -> R <<= S -> star R <<= S.
Proof.
intros H1 H2 x y.
induction 1 as [x|x x' y H4 _ IH].
- reflexivity.
- transitivity x'; auto.
Qed.
Fact star_idem R :
star (star R) === star R.
Proof.
split.
- induction 1; eauto.
- apply star_mono, star_exp.
Qed.
Fact plus_idem R :
plus (plus R) === plus R.
Proof.
split; eauto.
induction 1; eauto.
Qed.
Fact plus_fixpoint R :
plus (star R) === star R.
Proof.
split.
- induction 1; eauto.
- eauto.
Qed.
Fact star_absorbtion R :
star (plus R) === star R.
Proof.
split.
- induction 1; eauto.
apply plus_destruct in H. destruct H. eauto.
- eapply star_mono. eauto.
Qed.
Lemma sym_symmetric R x y:
sym R x y -> sym R y x.
Proof.
intros []; eauto using sym.
Qed.
Lemma refl_star R x y:
x = y -> star R x y.
Proof.
intros ->; eauto.
Qed.
Lemma refl_equiv R x:
equiv R x x.
Proof.
constructor.
Qed.
Lemma equiv_trans R x y z:
equiv R x y -> equiv R y z -> equiv R x z.
Proof. eapply star_trans. Qed.
Lemma equiv_symm R x y:
equiv R x y -> equiv R y x.
Proof.
induction 1.
constructor; eauto.
eapply star_trans; eauto.
econstructor 2; eauto using refl_equiv, sym_symmetric.
Qed.
Lemma equiv_star R x y:
star R x y -> equiv R x y.
Proof.
induction 1; unfold equiv in *; eauto using sym, star.
Qed.
End Properties.
Strong normalisation
Section StrongNormalisation.
Variables (X A: Type).
Variables (R: X -> X -> Prop) (S: A -> A -> Prop).
Definition Normal x := forall y, ~ R x y.
Definition evaluates s t := star R s t /\ Normal t.
Inductive SN {X} (R: X -> X -> Prop) : X -> Prop :=
| SNC x : (forall y, R x y -> SN R y) -> SN R x.
Lemma SN_ext Q x :
(forall x y, R x y <-> Q x y) ->
SN R x <-> SN Q x.
Proof.
split; induction 1; econstructor; firstorder.
Qed.
Fact SN_unfold x :
SN R x <-> forall y, R x y -> SN R y.
Proof.
split.
- destruct 1 as [x H]. exact H.
- intros H. constructor. exact H.
Qed.
Fact Normal_SN x :
Normal x -> SN R x.
Proof.
intros H. constructor. intros y H1.
exfalso. eapply H; eauto.
Qed.
Fact Normal_star_stops x:
Normal x -> forall y, star R x y -> x = y.
Proof.
destruct 2; firstorder.
Qed.
Fact SN_plus x :
SN R x <-> SN (plus R) x.
Proof.
split.
- induction 1 as [x _ IH].
constructor. induction 1; eauto.
apply IHplus. intros z H1 % plus_exp.
destruct (IH x' H) as [H2].
apply H3. eauto.
- induction 1 as [x _ IH].
constructor. intros y H1. apply IH. eauto.
Qed.
Definition morphism (f: X -> A) := forall x y, R x y -> S (f x) (f y).
Fact SN_morphism f x :
morphism f -> SN S (f x) -> SN R x.
Proof.
intros H H1.
remember (f x) as a eqn:H2. revert x H2.
induction H1 as [a _ IH]. intros x ->.
constructor. intros y H1 % H.
apply (IH _ H1). reflexivity.
Qed.
Fact SN_finite_steps:
(forall x, (exists y, R x y) \/ Normal x) -> forall x, SN R x -> exists2 y, star R x y & Normal y.
Proof.
intros H; induction 1 as [x H1 IH]. destruct (H x) as [[y H2]|].
+ edestruct IH as [z H3 H4]; eauto.
+ eexists; eauto.
Qed.
End StrongNormalisation.
Section Confluence.
Variable X: Type.
Implicit Types (x y z : X) (R S : X -> X -> Prop).
Definition joinable R x y := exists2 z, R x z & R y z.
Definition diamond R := forall x y z, R x y -> R x z -> joinable R y z.
Definition confluent R := diamond (star R).
Definition semi_confluent R :=
forall x y z, R x y -> star R x z -> joinable (star R) y z.
Fact diamond_semi_confluent R :
diamond R -> semi_confluent R.
Proof.
intros H x y1 y2 H1 H2. revert y1 H1.
induction H2 as [x|x x' y2 H2 _ IH]; intros y1 H1.
- exists y1; eauto.
- assert (joinable R y1 x') as [z H3 H4].
{ eapply H; eauto. }
assert (joinable (star R) z y2) as [u H5 H6].
{ apply IH; auto. }
exists u; eauto.
Qed.
Fact confluent_semi R :
confluent R <-> semi_confluent R.
Proof.
split.
- intros H x y1 y2 H1 H2.
eapply H; [|exact H2]. auto.
- intros H x y1 y2 H1 H2. revert y2 H2.
induction H1 as [x|x x' y1 H1 _ IH]; intros y2 H2.
+ exists y2; auto.
+ assert (joinable (star R) x' y2) as [z H3 H4].
{ eapply H; eauto. }
assert (joinable (star R) y1 z) as [u H5 H6].
{ apply IH; auto. }
exists u; eauto.
Qed.
Fact diamond_confluent R :
diamond R -> confluent R.
Proof.
intros H.
apply confluent_semi, diamond_semi_confluent, H.
Qed.
Fact joinable_ext R S x y:
R === S -> joinable R x y -> joinable S x y.
Proof.
firstorder.
Qed.
Fact diamond_ext R S:
R === S -> diamond S -> diamond R.
Proof.
intros H1 H2 x y z H3 H4.
assert (joinable S y z); firstorder.
Qed.
Lemma confluence_normal_left R x y z:
confluent R -> Normal R y ->
star R x y -> star R x z ->
star R z y.
Proof.
intros H1 H2 H3 H4. destruct (H1 _ _ _ H3 H4) as [x' A B].
enough (x' = y) by congruence.
destruct A; eauto; exfalso; eapply H2; eauto.
Qed.
Lemma confluence_normal_right R x y z:
confluent R -> Normal R z ->
star R x y -> star R x z ->
star R y z.
Proof.
intros H1 H2 H3 H4. destruct (H1 _ _ _ H3 H4) as [x' A B].
enough (x' = z) by congruence.
destruct B; eauto; exfalso; eapply H2; eauto.
Qed.
Lemma confluence_unique_normal_forms R x y z:
confluent R -> Normal R y -> Normal R z ->
star R x y -> star R x z -> y = z.
Proof.
intros H1 H2 H3 H4 H5. destruct (H1 _ _ _ H4 H5) as [x' A B].
destruct A; [destruct B | ]; eauto; exfalso; [ eapply H3 | eapply H2 ]; eauto.
Qed.
Lemma church_rosser (R: X -> X -> Prop) s t:
confluent R -> equiv R s t -> exists v: X, star R s v /\ star R t v.
Proof.
induction 2.
- now (exists x).
- inv H0.
+ destruct IHstar as [v]; exists v; intuition; eauto.
+ destruct IHstar; intuition.
edestruct H.
eapply H3. econstructor 2; eauto.
exists x1; split; eauto.
Qed.
End Confluence.
Variables (X A: Type).
Variables (R: X -> X -> Prop) (S: A -> A -> Prop).
Definition Normal x := forall y, ~ R x y.
Definition evaluates s t := star R s t /\ Normal t.
Inductive SN {X} (R: X -> X -> Prop) : X -> Prop :=
| SNC x : (forall y, R x y -> SN R y) -> SN R x.
Lemma SN_ext Q x :
(forall x y, R x y <-> Q x y) ->
SN R x <-> SN Q x.
Proof.
split; induction 1; econstructor; firstorder.
Qed.
Fact SN_unfold x :
SN R x <-> forall y, R x y -> SN R y.
Proof.
split.
- destruct 1 as [x H]. exact H.
- intros H. constructor. exact H.
Qed.
Fact Normal_SN x :
Normal x -> SN R x.
Proof.
intros H. constructor. intros y H1.
exfalso. eapply H; eauto.
Qed.
Fact Normal_star_stops x:
Normal x -> forall y, star R x y -> x = y.
Proof.
destruct 2; firstorder.
Qed.
Fact SN_plus x :
SN R x <-> SN (plus R) x.
Proof.
split.
- induction 1 as [x _ IH].
constructor. induction 1; eauto.
apply IHplus. intros z H1 % plus_exp.
destruct (IH x' H) as [H2].
apply H3. eauto.
- induction 1 as [x _ IH].
constructor. intros y H1. apply IH. eauto.
Qed.
Definition morphism (f: X -> A) := forall x y, R x y -> S (f x) (f y).
Fact SN_morphism f x :
morphism f -> SN S (f x) -> SN R x.
Proof.
intros H H1.
remember (f x) as a eqn:H2. revert x H2.
induction H1 as [a _ IH]. intros x ->.
constructor. intros y H1 % H.
apply (IH _ H1). reflexivity.
Qed.
Fact SN_finite_steps:
(forall x, (exists y, R x y) \/ Normal x) -> forall x, SN R x -> exists2 y, star R x y & Normal y.
Proof.
intros H; induction 1 as [x H1 IH]. destruct (H x) as [[y H2]|].
+ edestruct IH as [z H3 H4]; eauto.
+ eexists; eauto.
Qed.
End StrongNormalisation.
Section Confluence.
Variable X: Type.
Implicit Types (x y z : X) (R S : X -> X -> Prop).
Definition joinable R x y := exists2 z, R x z & R y z.
Definition diamond R := forall x y z, R x y -> R x z -> joinable R y z.
Definition confluent R := diamond (star R).
Definition semi_confluent R :=
forall x y z, R x y -> star R x z -> joinable (star R) y z.
Fact diamond_semi_confluent R :
diamond R -> semi_confluent R.
Proof.
intros H x y1 y2 H1 H2. revert y1 H1.
induction H2 as [x|x x' y2 H2 _ IH]; intros y1 H1.
- exists y1; eauto.
- assert (joinable R y1 x') as [z H3 H4].
{ eapply H; eauto. }
assert (joinable (star R) z y2) as [u H5 H6].
{ apply IH; auto. }
exists u; eauto.
Qed.
Fact confluent_semi R :
confluent R <-> semi_confluent R.
Proof.
split.
- intros H x y1 y2 H1 H2.
eapply H; [|exact H2]. auto.
- intros H x y1 y2 H1 H2. revert y2 H2.
induction H1 as [x|x x' y1 H1 _ IH]; intros y2 H2.
+ exists y2; auto.
+ assert (joinable (star R) x' y2) as [z H3 H4].
{ eapply H; eauto. }
assert (joinable (star R) y1 z) as [u H5 H6].
{ apply IH; auto. }
exists u; eauto.
Qed.
Fact diamond_confluent R :
diamond R -> confluent R.
Proof.
intros H.
apply confluent_semi, diamond_semi_confluent, H.
Qed.
Fact joinable_ext R S x y:
R === S -> joinable R x y -> joinable S x y.
Proof.
firstorder.
Qed.
Fact diamond_ext R S:
R === S -> diamond S -> diamond R.
Proof.
intros H1 H2 x y z H3 H4.
assert (joinable S y z); firstorder.
Qed.
Lemma confluence_normal_left R x y z:
confluent R -> Normal R y ->
star R x y -> star R x z ->
star R z y.
Proof.
intros H1 H2 H3 H4. destruct (H1 _ _ _ H3 H4) as [x' A B].
enough (x' = y) by congruence.
destruct A; eauto; exfalso; eapply H2; eauto.
Qed.
Lemma confluence_normal_right R x y z:
confluent R -> Normal R z ->
star R x y -> star R x z ->
star R y z.
Proof.
intros H1 H2 H3 H4. destruct (H1 _ _ _ H3 H4) as [x' A B].
enough (x' = z) by congruence.
destruct B; eauto; exfalso; eapply H2; eauto.
Qed.
Lemma confluence_unique_normal_forms R x y z:
confluent R -> Normal R y -> Normal R z ->
star R x y -> star R x z -> y = z.
Proof.
intros H1 H2 H3 H4 H5. destruct (H1 _ _ _ H4 H5) as [x' A B].
destruct A; [destruct B | ]; eauto; exfalso; [ eapply H3 | eapply H2 ]; eauto.
Qed.
Lemma church_rosser (R: X -> X -> Prop) s t:
confluent R -> equiv R s t -> exists v: X, star R s v /\ star R t v.
Proof.
induction 2.
- now (exists x).
- inv H0.
+ destruct IHstar as [v]; exists v; intuition; eauto.
+ destruct IHstar; intuition.
edestruct H.
eapply H3. econstructor 2; eauto.
exists x1; split; eauto.
Qed.
End Confluence.
Right-recursive version of star.
Inductive starL {X: Type} (R: X -> X -> Prop) (x : X): X -> Prop :=
| starReflL : starL R x x
| starStepL y y': starL R x y -> R y y' -> starL R x y'.
Hint Constructors starL.
Lemma star_starL X (R : X -> X -> Prop) x y :
starL R x y <-> star R x y .
Proof.
split.
- induction 1; auto. induction IHstarL; eauto.
- induction 1; eauto. clear H0. induction IHstar; eauto.
Qed.
Typeclass Instances
Global Instance subrel_star {X} (R : X -> X -> Prop) :
subrelation (plus R) (star R).
Proof.
intros ?; eapply plus_star.
Qed.
Global Instance subrel_star_mono {X} (R S: X -> X -> Prop) (H: subrelation R S) :
subrelation (star R) (star S).
Proof.
exact (star_mono _ H).
Qed.
Global Instance subrel_plus_mono {X} (R S: X -> X -> Prop) (H: subrelation R S) :
subrelation (plus R) (plus S).
Proof.
exact (plus_mono _ H).
Qed.
Global Instance subrel_star_equiv {X} (R: X -> X -> Prop) :
subrelation (star R) (equiv R).
Proof.
exact (@equiv_star _ R).
Qed.
Global Instance star_preorder {X} (R: X -> X -> Prop):
PreOrder (star R).
Proof.
constructor; hnf; eauto using star_trans.
Qed.
Global Instance star_expansive {X} (R: X -> X -> Prop):
subrelation R (star R).
Proof.
intros ?; eapply star_exp.
Qed.
Global Instance plus_expansive {X} (R: X -> X -> Prop):
subrelation R (plus R).
Proof.
intros?; eapply plus_exp.
Qed.
Global Instance plus_transitive {X} (R: X -> X -> Prop):
Transitive (plus R).
Proof.
intros ?; eapply plus_trans.
Qed.
Global Instance sym_Symmetric {X} (R: X -> X -> Prop):
Symmetric (sym R).
Proof.
firstorder using sym_symmetric.
Qed.
Global Instance equiv_Equivalence {X} (R: X -> X -> Prop):
Equivalence (equiv R).
Proof.
constructor; try firstorder using refl_equiv, equiv_trans, equiv_symm.
intros ? ? ? ; eapply equiv_trans.
Qed.
subrelation (plus R) (star R).
Proof.
intros ?; eapply plus_star.
Qed.
Global Instance subrel_star_mono {X} (R S: X -> X -> Prop) (H: subrelation R S) :
subrelation (star R) (star S).
Proof.
exact (star_mono _ H).
Qed.
Global Instance subrel_plus_mono {X} (R S: X -> X -> Prop) (H: subrelation R S) :
subrelation (plus R) (plus S).
Proof.
exact (plus_mono _ H).
Qed.
Global Instance subrel_star_equiv {X} (R: X -> X -> Prop) :
subrelation (star R) (equiv R).
Proof.
exact (@equiv_star _ R).
Qed.
Global Instance star_preorder {X} (R: X -> X -> Prop):
PreOrder (star R).
Proof.
constructor; hnf; eauto using star_trans.
Qed.
Global Instance star_expansive {X} (R: X -> X -> Prop):
subrelation R (star R).
Proof.
intros ?; eapply star_exp.
Qed.
Global Instance plus_expansive {X} (R: X -> X -> Prop):
subrelation R (plus R).
Proof.
intros?; eapply plus_exp.
Qed.
Global Instance plus_transitive {X} (R: X -> X -> Prop):
Transitive (plus R).
Proof.
intros ?; eapply plus_trans.
Qed.
Global Instance sym_Symmetric {X} (R: X -> X -> Prop):
Symmetric (sym R).
Proof.
firstorder using sym_symmetric.
Qed.
Global Instance equiv_Equivalence {X} (R: X -> X -> Prop):
Equivalence (equiv R).
Proof.
constructor; try firstorder using refl_equiv, equiv_trans, equiv_symm.
intros ? ? ? ; eapply equiv_trans.
Qed.