(* Version: 26.09. *)

Finite Types and Mappings

Our development utilises well-scoped de Bruijn syntax. This means that the de Bruijn indices are taken from finite types. As a consequence, any kind of substitution or environment used in conjunction with well-scoped syntax takes the form of a mapping from some finite type I^n. In particular, renamings are mappings I^n -> I^m. Here we develop the theory of how these parts interact.
Require Export axioms.
Set Implicit Arguments.
Unset Strict Implicit.

Definition ap {X Y} (f : X Y) {x y : X} (p : x = y) : f x = f y :=
  match p with eq_refl eq_refl end.

Definition apc {X Y} {f g : X Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
  match q with eq_refl match p with eq_refl eq_refl end end.

Forward Function Composition

Substitutions represented as functions are ubiquitious in this development and we often have to compose them, without talking about their pointwise behaviour. That is, we are interested in the forward compostion of functions, f o g, for which we introduce a convenient notation, "f >> g". The direction of the arrow serves as a reminder of the forward nature of this composition, that is first apply f, then g.

Finite Types

We implement the finite type with n elements, I^n, as the n-fold iteration of the Option Type. I^0 is implemented as the empty type.

Fixpoint fin (n : ) : Type :=
  match n with
  | 0 False
  | S m option (fin m)
  end.

Definition funcomp {X Y Z} (g : Y Z) (f : X Y) :=
   x g (f x).

Class Subst1 (X : Type) (Y : Type) :=
  subst1 : {m n}, (fin m X n) Y m Y n.

Class Ren1 (X : Type) :=
  ren1 : {m n}, (fin m fin n) X m X n.

Class Subst2 ( : Type) (Y : Type) :=
  subst2 : { }, (fin ) (fin ) Y Y .

Class Ren2 (X : Type) :=
  ren2 : {m n}, (fin m fin n) X m X n.

Notation "s [ sigma ]" := (@ _ _ _ _ _ s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.

Notation "s [ sigma ; tau ]" := ( s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.

Notation "s ⟨ sigma ⟩" := (@ _ _ _ _ s) (at level 7, left associativity, format "s '/' ⟨ sigma ⟩") : subst_scope.

Notation "[ sigma ]" := (@ _ _ _ _ _ ) (at level 1, left associativity) : fscope.
Notation "⟨ xi ⟩" := (@ _ _ _ _ ) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.

Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.

Notation "f >> g" := (funcomp g f) (*fun x => g (f x)*) (at level 50).
Open Scope subst_scope.

Extension of Finite Mappings

Assume we are given a mapping f from I^n to some type X, then we can extend this mapping with a new value from x : X to a mapping from I^n+1 to X. We denote this operation by x . f and define it as follows:
Definition scons {X : Type} {n : } (x : X) (f : fin n X) (m : fin (S n)) : X :=
  match m with
  | None x
  | Some i f i
  end.
Notation "x .: f" := (@scons _ _ x f) (at level 55) : subst_scope.

Renamings and Injective Renamings

As mentioned above, renamings are mappings between finite types.
Definition ren (m n : ) : Type := fin m fin n.

We give a special name, bound, to the newest element in a non-empty finite type, as it usually corresponds to a freshly bound variable. We also concisely capture that I^0 really is empty with an exfalso proof principle.
Definition bound {n : } : fin (S n) := None.
Definition null {T} (i : fin 0) : T := match i with end.

Definition shift {n : } : ren n (S n) :=
  Some.

Definition up_ren m n ( : ren m n) : ren (S m) (S n) :=
  bound .: >> shift.

Definition var_zero {n : } : fin (S n) := None.

Definition idren {k: } : ren k k :=
   x x.

Definition comp := @funcomp.

Lemma up_ren_ren k l m (: ren k l) ( : ren l m) (: ren k m) (E: x, ( >> ) x = x) :
   x, (up_ren >> up_ren ) x = up_ren x.
Proof.
  intros [x|].
  - simpl. unfold funcomp. now rewrite E.
  - reflexivity.
Qed.


Arguments up_ren_ren {k l m} E.

Lemmas for one sort.
(* AsimplConsEta *)
Lemma scons_eta {T} {n : } (f : fin (S n) T) :
  f bound .: shift >> f = f.
Proof. fext. intros [x|]; reflexivity. Qed.

Definition id {X} (x : X) := x.

Lemma scons_eta_id {n : } : bound .: shift = id :> (fin (S n) fin (S n)).
Proof. fext. intros [x|]; reflexivity. Qed.

Lemma scons_comp (T: Type) U {m} (s: T) (: fin m T) (: T U ) :
  (s .: ) >> = ( s) .: ( >> ) .
Proof.
  fext. intros [x|]. reflexivity. simpl. reflexivity.
Qed.


Ltac fsimpl :=
  repeat match goal with
         | [|- context[id >> ?f]] change (id >> f) with f (* AsimplCompIdL *)
         | [|- context[?f >> id]] change (f >> id) with f (* AsimplCompIdR *)
         | [|- context [id ?s]] change (id s) with s
         | [|- context[comp ?f ?g]] change (comp f g) with (g >> f) (* AsimplCompIdL *)
         | [|- context[(?f >> ?g) >> ?h]]
           change ((f >> g) >> h) with (f >> (g >> h)) (* AsimplComp *)
         | [|- context[(?s.:?) var_zero]] change ((s.:) var_zero) with s
         | [|- context[(?s.:?) bound]] change ((s.:) bound) with s
         | [|- context[(?s.:?) (shift ?m)]] change ((s.:) (shift m)) with ( m)
         | [|- context[idren >> ?f]] change (idren >> f) with f
         | [|- context[?f >> idren]] change (f >> idren) with f
         | [|- context[(?f >> ?g) >> ?h]]
           change ((f >> g) >> h) with (f >> (g >> h))
         | [|- context[?f >> (?x .: ?g)]]
           change (f >> (x .: g)) with g
         | [|- context[? .: shift >> ?f]]
           change with (f bound); rewrite (@scons_eta _ _ f)
         | [|- context[?f bound .: ?g]]
           change g with (shift >> f); rewrite scons_eta
         | _ first [progress (rewrite scons_comp) | progress (rewrite scons_eta_id)]
         end.

Ltac fsimplc :=
  repeat match goal with
         | [H: context[id >> ?f] |- _] change (id >> f) with f in H(* AsimplCompIdL *)
         | [H: context[?f >> id]|- _] change (f >> id) with f in H(* AsimplCompIdR *)
         | [H: context [id ?s]|- _] change (id s) with s in H
         | [H: context[comp ?f ?g]|- _] change (comp f g) with (g >> f) in H (* AsimplCompIdL *)
         | [H: context[(?f >> ?g) >> ?h]|- _]
           change ((f >> g) >> h) with (f >> (g >> h)) in H (* AsimplComp *)
         | [H: context[(?s.:?) var_zero]|- _] change ((s.:) var_zero) with s in H
         | [H: context[(?s.:?) bound]|- _] change ((s.:) bound) with s in H
         | [H: context[(?s.:?) (shift ?m)]|- _] change ((s.:) (shift m)) with ( m) in H
         | [H: context[idren >> ?f]|- _] change (idren >> f) with f in H
         | [H: context[?f >> idren]|- _] change (f >> idren) with f in H
         | [H: context[(?f >> ?g) >> ?h]|- _]
           change ((f >> g) >> h) with (f >> (g >> h)) in H
         | [H: context[?f >> (?x .: ?g)]|- _]
           change (f >> (x .: g)) with g in H
         | [H: context[? .: shift >> ?f]|- _]
           change with (f bound) in H; rewrite (@scons_eta _ _ f) in H
         | [H: context[?f bound .: ?g]|- _]
           change g with (shift >> f) in H; rewrite scons_eta in H
         | _ first [progress (rewrite scons_comp in *) | progress (rewrite scons_eta_id in *)]
         end.

Tactic Notation "fsimpl" "in" "*" :=
  fsimpl; fsimplc.

Opaque scons.
Opaque bound.
Opaque null.
Opaque shift.
Opaque up_ren.
Opaque var_zero.
Opaque idren.
Opaque comp.
Opaque funcomp.
Opaque id.

Notations


Class Var (X : Type) :=
  ids : {m}, fin m X m.

Module CommaNotation.
Notation "s , sigma" := (scons s ) (at level 60, format "s , sigma", right associativity) : subst_scope.
End CommaNotation.

Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.

Notation "↑" := (shift) : subst_scope.

Tactic Notation "auto_case" tactic(t) := (match goal with
                                           | [|- (i : fin 0), _] intros []; t
                                           | [|- (i : fin (S (S (S (S _))))), _] intros [[[[|]|]|]|]; t
                                           | [|- (i : fin (S (S (S _)))), _] intros [[[|]|]|]; t
                                           | [|- (i : fin (S (S _))), _] intros [[?|]|]; t
                                           | [|- (i : fin (S _)), _] intros [?|]; t
                                           end).