Companion.companion

Section 3: Tower-based Companions

Require Import prelim.

Section Companion.
Variables (A : clat) (f : A A).
Hypothesis (fP : monotone f).
Implicit Types (P : Pred A) (g : A A) (x y z : A).

Definition 2


Inductive T : Pred A :=
| T_step x : T x T (f x)
| T_lim I (F : I A) : ( i, T (F i)) T (inf F).

Definition t (x : A) := \inf_(y | T y x y) y.

Fact 3


Lemma T_t x : T (t x).
Proof. rewrite/t inf_inf. by apply: T_lim -[y [ty _]] /=. Qed.

Global Instance t_closure : is_closure t.
Proof.
  split [{y}|]. by apply: infIc i [].
  move le_x_ty. apply: infEc le_refl. split //. exact: T_t.
Qed.


Global Instance t_monotone : monotone t. exact _. Qed.

Lemma t_inc x : x t x.
Proof. exact: closure_inc. Qed.

Lemma t_idem x : t (t x) = t x.
Proof. exact: closure_idem. Qed.

Lemma t_img x : T x t x = x.
Proof.
  split [tx|]. apply: closure_stable. exact: infEc le_refl. exact: T_t.
Qed.


Fact 4


Lemma t_f x : f (t x) = t (f (t x)).
Proof.
  apply: le_eq. exact: t_inc. apply: infEc le_refl. split //.
  apply: T_step. exact: T_t.
Qed.


Definition 5


Definition inf_closed P := I (F : I A), ( i, P (F i)) P (inf F).

Lemma inf_closed_le x : inf_closed (ord_op x).
Proof. move I F h. exact: infI. Qed.

Lemma inf_closed_mono g :
  monotone g inf_closed (fun x g x x).
Proof.
  move gP I F h. apply: infI i. rewrite -h. apply: mono. exact: infE.
Qed.


Theorem 6


Theorem tower_ind P :
  inf_closed P
  ( x, P (t x) P (f (t x)))
   x, P (t x).
Proof.
  move Hp Hf x. apply: (Hp) y. apply: (Hp) -[ty _]. elim: ty {y}.
  - move y /t_img . exact: Hf.
  - move I F _. exact: Hp.
Qed.


Lemma 7


Lemma nu_t :
   f = t bot.
Proof.
  apply: le_eq. apply: tower_ind. exact: inf_closed_le. move x .
  exact: nu_postfix. apply: nu_tarski. rewrite t_f. apply: mono. exact: botE.
Qed.


Lemma 8


Section UptoLemma.
  Variable g : A A.
  Hypothesis gP : monotone g.

  Lemma upto :
    ( x, g (t x) t x g (f (t x)) f (t x))
    ( x, g (t x) t x).
  Proof.
    move h x. apply tower_ind {x} //. exact: inf_closed_mono.
  Qed.


  Lemma upto_below :
    ( x, g (t x) t x) g t.
  Proof.
    move h x. by rewrite -h {1}[x]t_inc.
  Qed.


  Lemma upto_char :
    g t
     x, g (t x) t x g (f (t x)) f (t x).
  Proof.
    move x . by rewrite -t_f.
  Qed.

End UptoLemma.

Lemma 9


Lemma t_fold x :
  f (t x) t x.
Proof.
  apply: upto x x h. exact: mono.
Qed.


Lemma 10


Definition compatible g := monotone g ( x, g (f x) f (g x)).

Lemma compat_below g :
  compatible g g t.
Proof.
  move [gP gC]. apply: upto_below. apply: upto x eqn.
  rewrite -{2}eqn. exact: gC.
Qed.


Lemma 11


Lemma t_compat :
  compatible t.
Proof.
  split. exact _. move x. by rewrite t_f -[t x]t_inc.
Qed.


Corollary 12


Corollary t_greatest_compatible :
  t = \sup_(g | compatible g) g.
Proof.
  apply: le_eq.
  - move x. exact: supIc t_compat le_refl.
  - apply: supEc g gC. exact: compat_below.
Qed.

End Companion.