From Undecidability.FOLC Require Export ND.
Section Consistency.
Context {Sigma : Signature}.
Context {HdF : eq_dec Funcs} {HdP : eq_dec Preds}.
Context {HeF : enumT Funcs} {HeP : enumT Preds}.
Definition consistent (T : theory) := ~ T ⊩CE ⊥.
Definition consistent_max T := consistent T /\ forall f, consistent (T ⋄ f) -> f ∈ T.
Lemma consistent_prv T phi :
consistent T -> T ⊩CE phi -> consistent (T ⋄ phi).
Proof.
intros HT Hphi. intros Hpsi2. now apply HT, (prv_T_remove Hphi).
Qed.
Lemma consistency_inheritance T1 T2 :
consistent T2 -> T1 ⊑ T2 -> consistent T1.
Proof.
intros H H2 H3. now eapply H, Weak_T, H2.
Qed.
Fact consistent_neg T phi :
consistent T -> (¬ phi) ∈ T -> ~ phi ∈ T.
Proof.
intros HT H H2. apply HT.
use_theory [phi; ¬ phi]. oapply 1. ctx.
Qed.
Fact consistent_neg2 T phi :
consistent T -> (T ⋄ phi) ⊩CE ⊥ -> consistent (T ⋄ (¬ phi)).
Proof.
intros HT H. now apply consistent_prv, prv_T_impl.
Qed.
Fact consistent_max_out T phi :
consistent_max T -> ~ phi ∈ T -> ~ consistent (T ⋄ phi).
Proof.
intros []; intuition.
Qed.
Lemma consistent_max_impl T phi psi :
consistent_max T -> (phi --> psi ∈ T <-> (phi ∈ T -> psi ∈ T)).
Proof.
intros; split; destruct H as [H1 H2].
- intros H H'. apply H2. apply consistent_prv; try assumption.
use_theory [phi; phi --> psi]. oapply 1. ctx.
- intros H. apply H2. intros (A & HA1 & HA2) % prv_T_impl.
apply H1. apply (prv_T_remove (phi := psi)).
+ apply elem_prv, H, H2, consistent_prv. assumption. use_theory A.
oindirect. oimport HA2. oapply 0. ointros. oexfalso. oapply 2. ctx.
+ use_theory (psi :: A). oimport HA2. oapply 0. ointros. ctx.
Qed.
Section Classical.
Hypothesis XM : forall X, X \/ ~ X.
Ltac indirect := match goal with
| [ |- ?H ] => destruct (XM H); [assumption | exfalso]
end.
Lemma inconsistent T phi :
~ consistent (T ⋄ phi) -> T ⋄ phi ⊩CE ⊥.
Proof.
destruct (XM (T ⋄ phi ⊩CE ⊥)); tauto.
Qed.
Lemma consistent_max_out2 T phi :
consistent_max T -> ~ phi ∈ T -> (¬ phi) ∈ T.
Proof.
intros [HT1 HT2] H2. now apply consistent_max_out, inconsistent, consistent_neg2, HT2 in H2.
Qed.
End Classical.
End Consistency.