Require Import List Lia.
Require Cantor.
Import ListNotations.
Require Import Undecidability.DiophantineConstraints.H10C.
Require Import ssreflect ssrbool ssrfun.
Set Default Proof Using "Type".
Set Default Goal Selector "!".
Module Argument.
Notation encode := Cantor.to_nat.
Notation decode := Cantor.of_nat.
Opaque Cantor.to_nat Cantor.of_nat.
Section Reduction.
Context (sqcs: list h10sqc).
Definition ζ (x t: nat) := encode (1 + x, encode (0, t)).
Definition θ (x y t: nat) := encode (1 + x, encode (1 + y, t)).
Definition v (t: nat) := encode (0, t).
Definition v012 := [(v 0, v 1, v 2); (v 1, v 0, v 2); (v 0, v 0, v 1)].
Definition h10sqc_to_h10ucs (c : h10sqc) : list h10uc :=
match c with
| h10sqc_one x => [(v 0, v 0, ζ x 0)]
| h10sqc_sq x y => [(v 0, ζ x 0, ζ y 1); (ζ y 0, v 0, ζ y 1)]
| h10sqc_plus x y z => [
(ζ x 0, v 0, ζ x 1); (v 0, ζ x 1, ζ x 2); (ζ x 3, ζ x 0, ζ x 2);
(ζ y 0, v 0, ζ y 1); (ζ x 3, ζ y 1, θ x y 0); (θ x y 1, ζ y 0, θ x y 0);
(ζ z 0, v 0, ζ z 1); (v 1, ζ z 1, θ x y 2); (θ x y 1, ζ z 0, θ x y 2)]
end.
Definition ucs := v012 ++ flat_map h10sqc_to_h10ucs sqcs.
Section Transport.
Context (φ : nat -> nat) (Hφ: forall c, In c sqcs -> h10sqc_sem φ c).
Definition φ' (n: nat) :=
match decode n with
| (0, 0) => 0
| (0, 1) => 1
| (0, 2) => 2
| (0, _) => 0
| (S x, m) =>
match decode m with
| (0, 0) => (φ x)
| (0, 1) => 1 + (φ x)
| (0, 2) => 1 + (1 + (φ x)) * (1 + (φ x))
| (0, 3) => 1 + (φ x) + (φ x)
| (S y, 0) => 2 + (φ x) + (φ x) + (1 + (φ y)) * (1 + (φ y))
| (S y, 1) => 2 + (φ x) + (φ x) + (φ y) + (φ y)
| (S y, 2) => 2 + (1 + (φ x) + (φ y)) * (1 + (φ x) + (φ y))
| (_, _) => 0
end
end.
Lemma h10sqc_to_h10ucs_spec {c} : h10sqc_sem φ c -> Forall (h10uc_sem φ') (h10sqc_to_h10ucs c).
Proof.
case: c => /=.
- move=> x ?. constructor; last done.
rewrite /= /ζ /φ' /v ?Cantor.cancel_of_to /=. by lia.
- move=> x y z ?. (do ? constructor);
rewrite /= /ζ /φ' /θ ?Cantor.cancel_of_to /=; by nia.
- move=> x y ?. (do ? constructor);
rewrite /= /ζ /φ' ?Cantor.cancel_of_to /=; by nia.
Qed.
End Transport.
Lemma transport : H10SQC_SAT sqcs -> H10UC_SAT ucs.
Proof.
move=> [φ Hφ]. exists (φ' φ).
move: Hφ. rewrite -?Forall_forall /ucs Forall_app Forall_flat_map.
move=> H. constructor.
- by do ? constructor.
- apply: Forall_impl H => ?. by move /h10sqc_to_h10ucs_spec.
Qed.
Section InverseTransport.
Context (φ' : nat -> nat) (Hφ': forall c, In c ucs -> h10uc_sem φ' c).
Definition φ (x: nat) := φ' (ζ x 0).
Lemma v_spec : φ' (v 0) = 0 /\ φ' (v 1) = 1.
Proof using Hφ'.
move: (Hφ'). rewrite -Forall_forall /ucs Forall_app /v012.
move=> [/Forall_cons_iff [+]] /Forall_cons_iff [+] /Forall_cons_iff [+] _ _ => /=.
by lia.
Qed.
Lemma h10sqc_of_h10ucs_spec {c} : Forall (h10uc_sem φ') (h10sqc_to_h10ucs c) -> h10sqc_sem φ c.
Proof using Hφ'.
case: c => /=.
- move=> x /Forall_cons_iff []. rewrite /= ?(proj1 v_spec) /φ. by lia.
- move=> x y z. do 9 (move=> /Forall_cons_iff /and_comm []).
rewrite /= ?(proj1 v_spec) ?(proj2 v_spec) /φ. by lia.
- move=> x y /Forall_cons_iff [+] /Forall_cons_iff [+ _]. rewrite /= ?(proj1 v_spec) /φ. by lia.
Qed.
End InverseTransport.
Lemma inverse_transport : H10UC_SAT ucs -> H10SQC_SAT sqcs.
Proof.
move=> [φ' Hφ']. exists (φ φ').
move: (Hφ'). rewrite -?Forall_forall /ucs Forall_app Forall_flat_map.
move=> [?]. apply: Forall_impl => ?. by apply: h10sqc_of_h10ucs_spec.
Qed.
End Reduction.
End Argument.
Require Import Undecidability.Synthetic.Definitions.
Square Diophantine Constraint Solvability many-one reduces to Uniform Diophantine Constraint Solvability
Theorem reduction : H10SQC_SAT ⪯ H10UC_SAT.
Proof.
exists (fun sqcs => Argument.ucs sqcs) => sqcs. constructor.
- exact: Argument.transport.
- exact: Argument.inverse_transport.
Qed.
Proof.
exists (fun sqcs => Argument.ucs sqcs) => sqcs. constructor.
- exact: Argument.transport.
- exact: Argument.inverse_transport.
Qed.