From Undecidability.Synthetic Require Import Definitions DecidabilityFacts EnumerabilityFacts ListEnumerabilityFacts ReducibilityFacts.
From Undecidability Require Import Shared.ListAutomation.
Import ListAutomationNotations.
From Coq Require Import Eqdep_dec.
Require Import Coq.Vectors.Vector.
Local Notation vec := t.
From Undecidability Require Export FOL.Util.Syntax.
Set Default Proof Using "Type".
Section fix_signature.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {ops : operators}.
Inductive Forall {A : Type} (P : A -> Type) : forall {n}, t A n -> Type :=
| Forall_nil : Forall P (@Vector.nil A)
| Forall_cons : forall n (x : A) (l : t A n), P x -> Forall P l -> Forall P (@Vector.cons A x n l).
Inductive vec_in {A : Type} (a : A) : forall {n}, t A n -> Type :=
| vec_inB {n} (v : t A n) : vec_in a (cons A a n v)
| vec_inS a' {n} (v : t A n) : vec_in a v -> vec_in a (cons A a' n v).
Hint Constructors vec_in : core.
Lemma term_rect' (p : term -> Type) :
(forall x, p (var x)) -> (forall F v, (Forall p v) -> p (func F v)) -> forall (t : term), p t.
Proof.
intros f1 f2. fix strong_term_ind' 1. destruct t as [n|F v].
- apply f1.
- apply f2. induction v.
+ econstructor.
+ econstructor. now eapply strong_term_ind'. eauto.
Qed.
Lemma term_rect (p : term -> Type) :
(forall x, p (var x)) -> (forall F v, (forall t, vec_in t v -> p t) -> p (func F v)) -> forall (t : term), p t.
Proof.
intros f1 f2. eapply term_rect'.
- apply f1.
- intros. apply f2. intros t. induction 1; inversion X; subst; eauto.
apply Eqdep_dec.inj_pair2_eq_dec in H2; subst; eauto. decide equality.
Qed.
Lemma term_ind (p : term -> Prop) :
(forall x, p (var x)) -> (forall F v (IH : forall t, In t v -> p t), p (func F v)) -> forall (t : term), p t.
Proof.
intros f1 f2. eapply term_rect'.
- apply f1.
- intros. apply f2. intros t. induction 1; inversion X; subst; eauto.
apply Eqdep_dec.inj_pair2_eq_dec in H3; subst; eauto. decide equality.
Qed.
Fixpoint size {ff : falsity_flag} (phi : form) :=
match phi with
| atom _ _ => 0
| falsity => 0
| bin b phi psi => S (size phi + size psi)
| quant q phi => S (size phi)
end.
Lemma size_ind {X : Type} (f : X -> nat) (P : X -> Prop) :
(forall x, (forall y, f y < f x -> P y) -> P x) -> forall x, P x.
Proof.
intros H x. apply H.
induction (f x).
- intros y. lia.
- intros y. intros [] % Lt.le_lt_or_eq.
+ apply IHn; lia.
+ apply H. injection H0. now intros ->.
Qed.
Lemma subst_size {ff : falsity_flag} rho phi :
size (subst_form rho phi) = size phi.
Proof.
revert rho; induction phi; intros rho; cbn; congruence.
Qed.
Lemma form_ind_subst :
forall P : form -> Prop,
P falsity ->
(forall P0 (t : vec term (ar_preds P0)), P (atom P0 t)) ->
(forall (b0 : binop) (f1 : form), P f1 -> forall f2 : form, P f2 -> P (bin b0 f1 f2)) ->
(forall (q : quantop) (f2 : form), (forall sigma, P (subst_form sigma f2)) -> P (quant q f2)) ->
forall (f4 : form), P f4.
Proof.
enough (H : forall (ff : falsity_flag) (P : (@form Σ_funcs Σ_preds ops ff) -> Prop),
(match ff return ((@form Σ_funcs Σ_preds ops ff) -> Prop) -> Prop with
| falsity_off => fun _ => True
| falsity_on => fun P' => P' falsity
end) P ->
(forall P0 (t : vec term (ar_preds P0)), P (atom P0 t)) ->
(forall (b0 : binop) (f1 : form), P f1 -> forall f2 : form, P f2 -> P (bin b0 f1 f2)) ->
(forall (q : quantop) (f2 : form), (forall sigma, P (subst_form sigma f2)) -> P (quant q f2)) ->
forall (f4 : form), P f4) by apply H.
intros ff P H1 H2 H3 H4 phi. induction phi using (@size_ind _ size).
destruct phi; cbn in *.
- easy.
- apply H2.
- apply H3; apply H; lia.
- apply H4. intros sigma. apply H. rewrite subst_size. lia.
Qed.
End fix_signature.
Section Subst.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {ops : operators}.
Lemma subst_term_ext (t : term) sigma tau :
(forall n, sigma n = tau n) -> t`[sigma] = t`[tau].
Proof.
intros H. induction t; cbn.
- now apply H.
- f_equal. now apply map_ext_in.
Qed.
Lemma subst_term_id (t : term) sigma :
(forall n, sigma n = var n) -> t`[sigma] = t.
Proof.
intros H. induction t; cbn.
- now apply H.
- f_equal. now erewrite map_ext_in, map_id.
Qed.
Lemma subst_term_var (t : term) :
t`[var] = t.
Proof.
now apply subst_term_id.
Qed.
Lemma subst_term_comp (t : term) sigma tau :
t`[sigma]`[tau] = t`[sigma >> subst_term tau].
Proof.
induction t; cbn.
- reflexivity.
- f_equal. rewrite map_map. now apply map_ext_in.
Qed.
Lemma subst_term_shift (t : term) s :
t`[↑]`[s..] = t.
Proof.
rewrite subst_term_comp. apply subst_term_id. now intros [|].
Qed.
Lemma up_term (t : term) xi :
t`[↑]`[up xi] = t`[xi]`[↑].
Proof.
rewrite !subst_term_comp. apply subst_term_ext. reflexivity.
Qed.
Lemma up_ext sigma tau :
(forall n, sigma n = tau n) -> forall n, up sigma n = up tau n.
Proof.
destruct n; cbn; trivial.
unfold funcomp. now rewrite H.
Qed.
Lemma up_var sigma :
(forall n, sigma n = var n) -> forall n, up sigma n = var n.
Proof.
destruct n; cbn; trivial.
unfold funcomp. now rewrite H.
Qed.
Lemma up_funcomp sigma tau :
forall n, (up sigma >> subst_term (up tau)) n = up (sigma >> subst_term tau) n.
Proof.
intros [|]; cbn; trivial.
setoid_rewrite subst_term_comp.
apply subst_term_ext. now intros [|].
Qed.
Lemma subst_ext {ff : falsity_flag} (phi : form) sigma tau :
(forall n, sigma n = tau n) -> phi[sigma] = phi[tau].
Proof.
induction phi in sigma, tau |- *; cbn; intros H.
- reflexivity.
- f_equal. apply map_ext. intros s. now apply subst_term_ext.
- now erewrite IHphi1, IHphi2.
- erewrite IHphi; trivial. now apply up_ext.
Qed.
Lemma subst_id {ff : falsity_flag} (phi : form) sigma :
(forall n, sigma n = var n) -> phi[sigma] = phi.
Proof.
induction phi in sigma |- *; cbn; intros H.
- reflexivity.
- f_equal. erewrite map_ext; try apply map_id. intros s. now apply subst_term_id.
- now erewrite IHphi1, IHphi2.
- erewrite IHphi; trivial. now apply up_var.
Qed.
Lemma subst_var {ff : falsity_flag} (phi : form) :
phi[var] = phi.
Proof.
now apply subst_id.
Qed.
Lemma subst_comp {ff : falsity_flag} (phi : form) sigma tau :
phi[sigma][tau] = phi[sigma >> subst_term tau].
Proof.
induction phi in sigma, tau |- *; cbn.
- reflexivity.
- f_equal. rewrite map_map. apply map_ext. intros s. apply subst_term_comp.
- now rewrite IHphi1, IHphi2.
- rewrite IHphi. f_equal. now apply subst_ext, up_funcomp.
Qed.
Lemma subst_shift {ff : falsity_flag} (phi : form) s :
phi[↑][s..] = phi.
Proof.
rewrite subst_comp. apply subst_id. now intros [|].
Qed.
Lemma up_form {ff : falsity_flag} xi psi :
psi[↑][up xi] = psi[xi][↑].
Proof.
rewrite !subst_comp. apply subst_ext. reflexivity.
Qed.
Lemma up_decompose {ff : falsity_flag} sigma phi :
phi[up (S >> sigma)][(sigma 0)..] = phi[sigma].
Proof.
rewrite subst_comp. apply subst_ext.
intros [].
- reflexivity.
- apply subst_term_shift.
Qed.
End Subst.
Section Bounded.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {ops : operators}.
Inductive bounded_t n : term -> Prop :=
| bounded_var x : n > x -> bounded_t n $x
| bouded_func f v : (forall t, Vector.In t v -> bounded_t n t) -> bounded_t n (func f v).
Inductive bounded : forall {ff}, nat -> form ff -> Prop :=
| bounded_atom ff n P v : (forall t, Vector.In t v -> bounded_t n t) -> @bounded ff n (atom P v)
| bounded_bin binop ff n phi psi : @bounded ff n phi -> @bounded ff n psi -> @bounded ff n (bin binop phi psi)
| bounded_quant quantop ff n phi : @bounded ff (S n) phi -> @bounded ff n (quant quantop phi)
| bounded_falsity n : @bounded falsity_on n falsity.
Arguments bounded {_} _ _.
Definition bounded_L {ff : falsity_flag} n A :=
forall phi, phi el A -> bounded n phi.
Lemma bounded_subst_t n t sigma tau :
(forall k, n > k -> sigma k = tau k) -> bounded_t n t -> t`[sigma] = t`[tau].
Proof.
intros H. induction 1; cbn; auto.
f_equal. now apply Vector.map_ext_in.
Qed.
Lemma bounded_subst {ff : falsity_flag} {n phi sigma tau} :
bounded n phi -> (forall k, n > k -> sigma k = tau k) -> phi[sigma] = phi[tau].
Proof.
induction 1 in sigma, tau |- *; cbn; intros HN; trivial.
- f_equal. apply Vector.map_ext_in. intros t Ht.
eapply bounded_subst_t; try apply HN. now apply H.
- now rewrite (IHbounded1 sigma tau), (IHbounded2 sigma tau).
- f_equal. apply IHbounded. intros [|k] Hk; cbn; trivial.
unfold funcomp. rewrite HN; trivial. lia.
Qed.
Lemma bounded_up_t {n t k} :
bounded_t n t -> k >= n -> bounded_t k t.
Proof using Σ_preds ops.
induction 1; intros Hk; constructor; try lia. firstorder.
Qed.
Lemma bounded_up {ff : falsity_flag} {n phi k} :
bounded n phi -> k >= n -> bounded k phi.
Proof.
induction 1 in k |- *; intros Hk; constructor; eauto.
- intros t Ht. eapply bounded_up_t; eauto.
- apply IHbounded. lia.
Qed.
Lemma In_inv {n} {t} {v : vec term n} :
In t v ->
(match n return vec term n -> Prop with
| 0 => fun _ => False
| S n => fun v' => (t = Vector.hd v') \/ (In t (Vector.tl v'))
end) v.
Proof. intros []; cbn; tauto. Qed.
Lemma find_bounded_step n (v : vec term n) :
(forall t : term, vec_in t v -> {n : nat | bounded_t n t}) -> { n | forall t, In t v -> bounded_t n t }.
Proof using Σ_preds ops.
induction v; cbn; intros HV.
- exists 0. intros t. inversion 1.
- destruct IHv as [k Hk], (HV h) as [l Hl]; try left.
+ intros t Ht. apply HV. now right.
+ exists (k + l). intros t H.
destruct (In_inv H) as [->|H'].
* cbn. apply (bounded_up_t Hl). lia.
* cbn in H'. apply (bounded_up_t (Hk t H')). lia.
Qed.
Lemma find_bounded_t t :
{ n | bounded_t n t }.
Proof using Σ_preds ops.
induction t using term_rect.
- exists (S x). constructor. lia.
- apply find_bounded_step in X as [n H]. exists n. now constructor.
Qed.
Lemma find_bounded {ff : falsity_flag} phi :
{ n | bounded n phi }.
Proof.
induction phi.
- exists 0. constructor.
- destruct (find_bounded_step _ t) as [n Hn].
+ eauto using find_bounded_t.
+ exists n. now constructor.
- destruct IHphi1 as [n Hn], IHphi2 as [k Hk]. exists (n + k).
constructor; eapply bounded_up; try eassumption; lia.
- destruct IHphi as [n Hn]. exists n. constructor. apply (bounded_up Hn). lia.
Qed.
Lemma find_bounded_L {ff : falsity_flag} A :
{ n | bounded_L n A }.
Proof.
induction A; cbn.
- exists 0. intros phi. inversion 1.
- destruct IHA as [k Hk], (find_bounded a) as [l Hl].
exists (k + l). intros t [<-|H]; eapply bounded_up; try eassumption; try (now apply Hk); lia.
Qed.
Fixpoint iter {X: Type} f n (x : X) :=
match n with
0 => x
| S m => f (iter f m x)
end.
Fact iter_switch {X} f n x :
f (@iter X f n x) = iter f n (f x).
Proof.
induction n; cbn; now try rewrite IHn.
Qed.
Lemma subst_up_var k x sigma :
x < k -> (var x)`[iter up k sigma] = var x.
Proof.
induction k in x, sigma |-*.
- now intros ?%PeanoNat.Nat.nlt_0_r.
- intros H.
destruct (Compare_dec.lt_eq_lt_dec x k) as [[| <-]|].
+ cbn [iter]. rewrite iter_switch. now apply IHk.
+ destruct x. reflexivity.
change (iter _ _ _) with (up (iter up (S x) sigma)).
change (var (S x)) with ((var x)`[↑]).
rewrite up_term, IHk. reflexivity. constructor.
+ lia.
Qed.
Lemma subst_bounded_term t sigma k :
bounded_t k t -> t`[iter up k sigma] = t.
Proof.
induction 1.
- now apply subst_up_var.
- cbn. f_equal.
rewrite <-(Vector.map_id _ _ v) at 2.
apply Vector.map_ext_in. auto.
Qed.
Lemma subst_bounded {ff : falsity_flag} k phi sigma :
bounded k phi -> phi[iter up k sigma] = phi.
Proof.
induction 1 in sigma |-*; cbn.
- f_equal.
rewrite <-(Vector.map_id _ _ v) at 2.
apply Vector.map_ext_in.
intros t Ht. apply subst_bounded_term. auto.
- now rewrite IHbounded1, IHbounded2.
- f_equal.
change (up _) with (iter up (S n) sigma).
apply IHbounded.
- reflexivity.
Qed.
End Bounded.
Lemma vec_cons_inv X n (v : Vector.t X n) x y :
In y (Vector.cons X x n v) -> (y = x) \/ (In y v).
Proof.
inversion 1; subst.
- now left.
- apply inj_pair2_eq_dec in H3 as ->.
+ now right.
+ decide equality.
Qed.
Ltac solve_bounds :=
repeat constructor; try lia; try inversion X; intros;
match goal with
| H : Vector.In ?x (@Vector.cons _ ?y _ ?v) |- _ => repeat apply vec_cons_inv in H as [->|H]; try inversion H
| H : Vector.In ?x (@Vector.nil _) |- _ => try inversion H
| _ => idtac
end.
Require Import EqdepFacts.
Lemma inj_pair2_eq_dec' A :
eq_dec A -> forall (P : A -> Type) (p : A) (x y : P p), existT P p x = existT P p y -> x = y.
Proof.
apply Eqdep_dec.inj_pair2_eq_dec.
Qed.
Ltac resolve_existT := try
match goal with
| [ H2 : @existT ?X _ _ _ = existT _ _ _ |- _ ] => eapply Eqdep_dec.inj_pair2_eq_dec in H2;
[subst | try (eauto || now intros; decide equality)]
end.
Lemma dec_vec_in X n (v : vec X n) :
(forall x, vec_in x v -> forall y, dec (x = y)) -> forall v', dec (v = v').
Proof with subst; try (now left + (right; intros[=])).
intros Hv. induction v; intros v'.
- pattern v'. apply Vector.case0...
- apply (Vector.caseS' v'). clear v'. intros h0 v'.
destruct (Hv h (vec_inB h v) h0)... edestruct IHv.
+ intros x H. apply Hv. now right.
+ left. f_equal. apply e.
+ right. intros H. inversion H. resolve_existT. tauto.
Qed.
#[global]
Instance dec_vec X {HX : eq_dec X} n : eq_dec (vec X n).
Proof.
intros v. refine (dec_vec_in _ _ _ _).
Qed.
Section EqDec.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {ops : operators}.
Hypothesis eq_dec_Funcs : eq_dec syms.
Hypothesis eq_dec_Preds : eq_dec preds.
Hypothesis eq_dec_binop : eq_dec binop.
Hypothesis eq_dec_quantop : eq_dec quantop.
Global Instance dec_term : eq_dec term.
Proof with subst; try (now left + (right; intros[=]; resolve_existT; congruence))
using eq_dec_Funcs.
intros t. induction t as [ | ]; intros [|? v']...
- decide (x = n)...
- decide (F = f)... destruct (dec_vec_in _ _ _ X v')...
Qed.
Instance dec_falsity : eq_dec falsity_flag.
Proof.
intros b b'. unfold dec. decide equality.
Qed.
Lemma eq_dep_falsity b phi psi :
eq_dep falsity_flag (@form Σ_funcs Σ_preds ops) b phi b psi <-> phi = psi.
Proof.
rewrite <- eq_sigT_iff_eq_dep. split.
- intros H. resolve_existT. reflexivity.
- intros ->. reflexivity.
Qed.
Lemma dec_form_dep {b1 b2} phi1 phi2 : dec (eq_dep falsity_flag (@form _ _ _) b1 phi1 b2 phi2).
Proof with subst; try (now left + (right; intros ? % eq_sigT_iff_eq_dep; resolve_existT; congruence))
using eq_dec_Funcs eq_dec_Preds eq_dec_quantop eq_dec_binop.
unfold dec. revert phi2; induction phi1; intros; try destruct phi2.
all: try now right; inversion 1. now left.
- decide (b = b0)... decide (P = P0)... decide (t = t0)... right.
intros [=] % eq_dep_falsity. resolve_existT. tauto.
- decide (b = b1)... decide (b0 = b2)... destruct (IHphi1_1 phi2_1).
+ apply eq_dep_falsity in e as ->. destruct (IHphi1_2 phi2_2).
* apply eq_dep_falsity in e as ->. now left.
* right. rewrite eq_dep_falsity in *. intros [=]. now resolve_existT.
+ right. rewrite eq_dep_falsity in *. intros [=]. now repeat resolve_existT.
- decide (b = b0)... decide (q = q0)... destruct (IHphi1 phi2).
+ apply eq_dep_falsity in e as ->. now left.
+ right. rewrite eq_dep_falsity in *. intros [=]. now resolve_existT.
Qed.
Global Instance dec_form {ff : falsity_flag} : eq_dec form.
Proof using eq_dec_Funcs eq_dec_Preds eq_dec_quantop eq_dec_binop.
intros phi psi. destruct (dec_form_dep phi psi); rewrite eq_dep_falsity in *; firstorder.
Qed.
End EqDec.
Section Enumerability.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {ops : operators}.
Variable list_Funcs : nat -> list syms.
Hypothesis enum_Funcs' : list_enumerator__T list_Funcs syms.
Variable list_Preds : nat -> list preds.
Hypothesis enum_Preds' : list_enumerator__T list_Preds preds.
Variable list_binop : nat -> list binop.
Hypothesis enum_binop' : list_enumerator__T list_binop binop.
Variable list_quantop : nat -> list quantop.
Hypothesis enum_quantop' : list_enumerator__T list_quantop quantop.
Fixpoint vecs_from X (A : list X) (n : nat) : list (vec X n) :=
match n with
| 0 => [Vector.nil X]
| S n => [ Vector.cons X x _ v | (x, v) ∈ (A × vecs_from X A n) ]
end.
Fixpoint L_term n : list term :=
match n with
| 0 => []
| S n => L_term n ++ var n :: concat ([ [ func F v | v ∈ vecs_from _ (L_term n) (ar_syms F) ] | F ∈ L_T n])
end.
Lemma L_term_cml :
cumulative L_term.
Proof.
intros ?; cbn; eauto.
Qed.
Lemma list_prod_in X Y (x : X * Y) A B :
x el (A × B) -> exists a b, x = (a , b) /\ a el A /\ b el B.
Proof.
induction A; cbn.
- intros [].
- intros [H | H] % in_app_or. 2: firstorder.
apply in_map_iff in H as (y & <- & Hel). exists a, y. tauto.
Qed.
Lemma vecs_from_correct X (A : list X) (n : nat) (v : vec X n) :
(forall x, vec_in x v -> x el A) <-> v el vecs_from X A n.
Proof.
induction n; cbn.
- split.
+ intros. left. pattern v. now apply Vector.case0.
+ intros [<- | []] x H. inv H.
- split.
+ intros. revert H. apply (Vector.caseS' v).
clear v. intros ? t0 H. in_collect (pair h t0); destruct (IHn t0).
eauto using vec_inB. apply H0. intros x Hx. apply H. now right.
+ intros Hv. apply in_map_iff in Hv as ([h v'] & <- & (? & ? & [= <- <-] & ? & ?) % list_prod_in).
intros x H. inv H; destruct (IHn v'); eauto. apply H2; trivial. now resolve_existT.
Qed.
Lemma vec_forall_cml X (L : nat -> list X) n (v : vec X n) :
cumulative L -> (forall x, vec_in x v -> exists m, x el L m) -> exists m, v el vecs_from _ (L m) n.
Proof.
intros HL Hv. induction v; cbn.
- exists 0. tauto.
- destruct IHv as [m H], (Hv h) as [m' H']. 1,3: eauto using vec_inB.
+ intros x Hx. apply Hv. now right.
+ exists (m + m'). in_collect (pair h v). 1: apply (cum_ge' (n:=m')); intuition lia.
apply vecs_from_correct. rewrite <- vecs_from_correct in H. intros x Hx.
apply (cum_ge' (n:=m)). all: eauto. lia.
Qed.
Lemma enum_term :
list_enumerator__T L_term term.
Proof with try (eapply cum_ge'; eauto; lia).
intros t. induction t using term_rect.
- exists (S x); cbn; eauto.
- apply vec_forall_cml in H as [m H]. 2: exact L_term_cml. destruct (el_T F) as [m' H'].
exists (S (m + m')); cbn. in_app 3. eapply in_concat_iff. eexists. split. 2: in_collect F...
apply in_map. rewrite <- vecs_from_correct in H |-*. intros x H''. specialize (H x H'')...
Qed.
Lemma enumT_term :
enumerable__T term.
Proof using enum_Funcs'.
apply enum_enumT. exists L_term. apply enum_term.
Qed.
Fixpoint L_form {ff : falsity_flag} n : list form :=
match n with
| 0 => match ff with falsity_on => [falsity] | falsity_off => [] end
| S n => L_form n
++ concat ([ [ atom P v | v ∈ vecs_from _ (L_term n) (ar_preds P) ] | P ∈ L_T n])
++ concat ([ [ bin op phi psi | (phi, psi) ∈ (L_form n × L_form n) ] | op ∈ L_T n])
++ concat ([ [ quant op phi | phi ∈ L_form n ] | op ∈ L_T n])
end.
Lemma L_form_cml {ff : falsity_flag} :
cumulative L_form.
Proof.
intros ?; cbn; eauto.
Qed.
Lemma enum_form {ff : falsity_flag} :
list_enumerator__T L_form form.
Proof with (try eapply cum_ge'; eauto; lia).
intros phi. induction phi.
- exists 1. cbn; eauto.
- rename t into v. destruct (el_T P) as [m Hm], (vec_forall_cml term L_term _ v) as [m' Hm']; eauto using enum_term.
exists (S (m + m')); cbn. in_app 2. eapply in_concat_iff. eexists. split.
2: in_collect P... eapply in_map. rewrite <- vecs_from_correct in *. intuition...
- destruct (el_T b0) as [m Hm], IHphi1 as [m1], IHphi2 as [m2]. exists (1 + m + m1 + m2). cbn.
in_app 3. apply in_concat. eexists. split. apply in_map... in_collect (pair phi1 phi2)...
- destruct (el_T q) as [m Hm], IHphi as [m' Hm']. exists (1 + m + m'). cbn -[L_T].
in_app 4. apply in_concat. eexists. split. apply in_map... in_collect phi...
Qed.
Lemma enumT_form {ff : falsity_flag} :
enumerable__T form.
Proof using enum_Funcs' enum_Preds' enum_binop' enum_quantop'.
apply enum_enumT. exists L_form. apply enum_form.
Defined.
End Enumerability.