From Undecidability.Shared.Libs.PSL Require Import FinTypes.
Lemma bool_enum_ok x:
count [true; false] x = 1.
Proof.
simpl. dec; destruct x; congruence.
Qed.
Lemma unit_enum_ok x:
count [tt] x = 1.
Proof.
simpl. destruct x; dec; congruence.
Qed.
Lemma Empty_set_enum_ok (x: Empty_set):
count nil x = 1.
Proof.
tauto.
Qed.
Lemma True_enum_ok x:
count [I] x = 1.
Proof.
simpl; dec; destruct x; congruence.
Qed.
Lemma False_enum_ok (x: False):
count nil x = 1.
Proof.
tauto.
Qed.
#[global]
Instance finTypeC_Empty_set: finTypeC (EqType Empty_set).
Proof.
econstructor. eapply Empty_set_enum_ok.
Defined.
#[global]
Instance finTypeC_bool: finTypeC (EqType bool).
Proof.
econstructor. apply bool_enum_ok.
Defined.
#[global]
Instance finTypeC_unit: finTypeC (EqType unit).
Proof. econstructor. apply unit_enum_ok.
Defined.
#[global]
Instance finTypeC_True : finTypeC (EqType True).
Proof.
econstructor. apply True_enum_ok.
Defined.
#[global]
Instance finTypeC_False : finTypeC (EqType False).
Proof.
econstructor. apply False_enum_ok.
Defined.
Lemma bool_enum_ok x:
count [true; false] x = 1.
Proof.
simpl. dec; destruct x; congruence.
Qed.
Lemma unit_enum_ok x:
count [tt] x = 1.
Proof.
simpl. destruct x; dec; congruence.
Qed.
Lemma Empty_set_enum_ok (x: Empty_set):
count nil x = 1.
Proof.
tauto.
Qed.
Lemma True_enum_ok x:
count [I] x = 1.
Proof.
simpl; dec; destruct x; congruence.
Qed.
Lemma False_enum_ok (x: False):
count nil x = 1.
Proof.
tauto.
Qed.
#[global]
Instance finTypeC_Empty_set: finTypeC (EqType Empty_set).
Proof.
econstructor. eapply Empty_set_enum_ok.
Defined.
#[global]
Instance finTypeC_bool: finTypeC (EqType bool).
Proof.
econstructor. apply bool_enum_ok.
Defined.
#[global]
Instance finTypeC_unit: finTypeC (EqType unit).
Proof. econstructor. apply unit_enum_ok.
Defined.
#[global]
Instance finTypeC_True : finTypeC (EqType True).
Proof.
econstructor. apply True_enum_ok.
Defined.
#[global]
Instance finTypeC_False : finTypeC (EqType False).
Proof.
econstructor. apply False_enum_ok.
Defined.