From Undecidability.Shared.Libs.PSL Require Import FinTypes.
Lemma ProdCount (T1 T2: eqType) (A: list T1) (B: list T2) (a:T1) (b:T2) :
count (prodLists A B) (a,b) = count A a * count B b .
Proof.
induction A.
- reflexivity.
- cbn. rewrite <- countSplit. decide (a = a0) as [E | E].
+ cbn. f_equal. subst a0. apply countMap. eauto.
+ rewrite <- plus_O_n. f_equal. now apply countMapZero. eauto.
Qed.
Lemma prod_enum_ok (T1 T2: finType) (x: T1 * T2):
count (prodLists (elem T1) (elem T2)) x = 1.
Proof.
destruct x as [x y]. rewrite ProdCount. unfold elem.
now repeat rewrite enum_ok.
Qed.
#[global]
Instance finTypeC_Prod (F1 F2: finType) : finTypeC (EqType (F1 * F2)).
Proof.
econstructor. apply prod_enum_ok.
Defined.
Lemma SomeElement (X: eqType) (A: list X) x:
count (toOptionList A) (Some x) = count A x .
Proof.
unfold toOptionList. simpl. dec; try congruence.
induction A.
+ tauto.
+ simpl. dec; congruence.
Qed.
Lemma NoneElement (X: eqType) (A: list X) :
count (toOptionList A) None = 1.
Proof.
unfold toOptionList. simpl. dec; try congruence. f_equal.
induction A.
- reflexivity.
- simpl; dec; congruence.
Qed.
Lemma option_enum_ok (T: finType) x :
count (toOptionList (elem T)) x = 1.
Proof.
destruct x.
+ rewrite SomeElement. apply enum_ok.
+ apply NoneElement.
Qed.
#[global]
Instance finTypeC_Option(F: finType): finTypeC (EqType (option F)).
Proof.
eapply FinTypeC. apply option_enum_ok.
Defined.
Lemma proveOne m n: m = 1 /\ n = 0 \/ n = 1 /\ m = 0 -> m + n = 1.
Proof.
lia.
Qed.
Lemma sum_enum_ok (X: finType) (Y: finType) x :
count (toSumList1 Y (elem X) ++ toSumList2 X (elem Y)) x = 1.
Proof.
rewrite <- countSplit. apply proveOne. destruct x.
- left. split; cbn.
+ rewrite toSumList1_count. apply enum_ok.
+ apply toSumList2_missing.
- right. split; cbn.
+ rewrite toSumList2_count. apply enum_ok.
+ apply toSumList1_missing.
Qed.
#[global]
Instance finTypeC_sum (X Y: finType) : finTypeC (EqType ( X + Y)).
Proof.
eapply FinTypeC. apply sum_enum_ok.
Defined.
#[export] Hint Extern 4 (finTypeC (EqType (_ * _))) => eapply finTypeC_Prod : typeclass_instances.
#[export] Hint Extern 4 (finTypeC (EqType (_ + _))) => eapply finTypeC_sum : typeclass_instances.
#[export] Hint Extern 4 (finTypeC (EqType (option _))) => eapply finTypeC_Option : typeclass_instances.
Lemma ProdCount (T1 T2: eqType) (A: list T1) (B: list T2) (a:T1) (b:T2) :
count (prodLists A B) (a,b) = count A a * count B b .
Proof.
induction A.
- reflexivity.
- cbn. rewrite <- countSplit. decide (a = a0) as [E | E].
+ cbn. f_equal. subst a0. apply countMap. eauto.
+ rewrite <- plus_O_n. f_equal. now apply countMapZero. eauto.
Qed.
Lemma prod_enum_ok (T1 T2: finType) (x: T1 * T2):
count (prodLists (elem T1) (elem T2)) x = 1.
Proof.
destruct x as [x y]. rewrite ProdCount. unfold elem.
now repeat rewrite enum_ok.
Qed.
#[global]
Instance finTypeC_Prod (F1 F2: finType) : finTypeC (EqType (F1 * F2)).
Proof.
econstructor. apply prod_enum_ok.
Defined.
Lemma SomeElement (X: eqType) (A: list X) x:
count (toOptionList A) (Some x) = count A x .
Proof.
unfold toOptionList. simpl. dec; try congruence.
induction A.
+ tauto.
+ simpl. dec; congruence.
Qed.
Lemma NoneElement (X: eqType) (A: list X) :
count (toOptionList A) None = 1.
Proof.
unfold toOptionList. simpl. dec; try congruence. f_equal.
induction A.
- reflexivity.
- simpl; dec; congruence.
Qed.
Lemma option_enum_ok (T: finType) x :
count (toOptionList (elem T)) x = 1.
Proof.
destruct x.
+ rewrite SomeElement. apply enum_ok.
+ apply NoneElement.
Qed.
#[global]
Instance finTypeC_Option(F: finType): finTypeC (EqType (option F)).
Proof.
eapply FinTypeC. apply option_enum_ok.
Defined.
Lemma proveOne m n: m = 1 /\ n = 0 \/ n = 1 /\ m = 0 -> m + n = 1.
Proof.
lia.
Qed.
Lemma sum_enum_ok (X: finType) (Y: finType) x :
count (toSumList1 Y (elem X) ++ toSumList2 X (elem Y)) x = 1.
Proof.
rewrite <- countSplit. apply proveOne. destruct x.
- left. split; cbn.
+ rewrite toSumList1_count. apply enum_ok.
+ apply toSumList2_missing.
- right. split; cbn.
+ rewrite toSumList2_count. apply enum_ok.
+ apply toSumList1_missing.
Qed.
#[global]
Instance finTypeC_sum (X Y: finType) : finTypeC (EqType ( X + Y)).
Proof.
eapply FinTypeC. apply sum_enum_ok.
Defined.
#[export] Hint Extern 4 (finTypeC (EqType (_ * _))) => eapply finTypeC_Prod : typeclass_instances.
#[export] Hint Extern 4 (finTypeC (EqType (_ + _))) => eapply finTypeC_sum : typeclass_instances.
#[export] Hint Extern 4 (finTypeC (EqType (option _))) => eapply finTypeC_Option : typeclass_instances.