From Undecidability Require Import TM.Util.Prelim TM.Util.Relations TM.Util.TM_facts.
Set Default Proof Using "Type".
Definition select (m n: nat) (X: Type) (I : Vector.t (Fin.t n) m) (V : Vector.t X n) : Vector.t X m :=
Vector.map (Vector.nth V) I.
Corollary select_nth m n X (I : Vector.t (Fin.t n) m) (V : Vector.t X n) (k : Fin.t m) :
(select I V) [@ k] = V [@ (I [@ k])].
Proof. now apply Vector.nth_map. Qed.
Section LiftTapes_Rel.
Variable (sig : finType) (F : Type).
Variable m n : nat.
Variable I : Vector.t (Fin.t n) m.
Definition not_index (i : Fin.t n) : Prop :=
~ Vector.In i I.
Variable (R : pRel sig F m).
Definition LiftTapes_select_Rel : pRel sig F n :=
fun t '(y, t') => R (select I t) (y, select I t').
Definition LiftTapes_eq_Rel : pRel sig F n :=
ignoreParam (fun t t' => forall i : Fin.t n, not_index i -> t'[@i] = t[@i]).
Definition LiftTapes_Rel := LiftTapes_select_Rel ∩ LiftTapes_eq_Rel.
Variable T : tRel sig m.
Definition LiftTapes_T : tRel sig n :=
fun t k => T (select I t) k.
End LiftTapes_Rel.
Arguments not_index : simpl never.
Arguments LiftTapes_select_Rel {sig F m n} I R x y /.
Arguments LiftTapes_eq_Rel {sig F m n} I x y /.
Arguments LiftTapes_Rel {sig F m n } I R x y /.
Arguments LiftTapes_T {sig m n} I T x y /.
Lemma vector_hd_nth (X : Type) (n : nat) (xs : Vector.t X (S n)) : Vector.hd xs = xs[@Fin0].
Proof. now destruct_vector. Qed.
Lemma vector_tl_nth (X : Type) (n : nat) (i : Fin.t (S n)) (xs : Vector.t X (S (S n))) : (Vector.tl xs)[@i] = xs[@Fin.FS i].
Proof. now destruct_vector. Qed.
Section Fill.
Fixpoint lookup_index_vector {m n : nat} (I : Vector.t (Fin.t n) m) : Fin.t n -> option (Fin.t m) :=
match I with
| Vector.nil _ => fun (i : Fin.t n) => None
| Vector.cons _ i' m' I' =>
fun (i : Fin.t n) =>
if Fin.eqb i i' then Some Fin0
else match lookup_index_vector I' i with
| Some j => Some (Fin.FS j)
| None => None
end
end.
Lemma Some_inj (X : Type) (x y : X) :
Some x = Some y -> x = y.
Proof. congruence. Qed.
Lemma lookup_index_vector_Some (m n : nat) (I : Vector.t (Fin.t n) m) (i : Fin.t n) (j : Fin.t m) :
dupfree I ->
I[@j] = i ->
lookup_index_vector I i = Some j.
Proof.
induction 1 as [ | m i' I' H1 H2 IH]; intros Heq; cbn in *.
- contradict (fin_destruct_O j).
- destruct (Fin.eqb i i') eqn:Eqb; cbn in *.
+ f_equal. apply Fin.eqb_eq in Eqb as ->.
pose proof (fin_destruct_S j) as [(j'&->) | ->]; cbn in *.
* exfalso. contradict H1. eapply vect_nth_In; eauto.
* reflexivity.
+ destruct (lookup_index_vector I' i) as [j' | ] eqn:El.
* pose proof (fin_destruct_S j) as [(j''&->) | ->]; cbn in *.
-- specialize IH with (1 := Heq). apply Some_inj in IH as ->. reflexivity.
-- subst. enough (Fin.eqb i i = true) by congruence. now apply Fin.eqb_eq.
* exfalso. pose proof (fin_destruct_S j) as [(j''&->) | ->]; cbn in *.
-- specialize IH with (1 := Heq). congruence.
-- subst. enough (Fin.eqb i i = true) by congruence. now apply Fin.eqb_eq.
Qed.
Lemma lookup_index_vector_Some' (m n : nat) (I : Vector.t (Fin.t n) m) (i : Fin.t n) (j : Fin.t m) :
lookup_index_vector I i = Some j ->
I[@j] = i.
Proof.
revert i j. induction I as [ | i' n' I' IH ]; intros i j Hj.
- destruct_fin j.
- pose proof (fin_destruct_S j) as [(j'&->) | ->]; cbn in *.
+ destruct (Fin.eqb i i'); inv Hj.
destruct (lookup_index_vector I' i) as [ j'' | ] eqn:Ej''.
* apply Some_inj in H0. apply Fin.FS_inj in H0 as ->. now apply IH.
* congruence.
+ destruct (Fin.eqb i i') eqn:Ei'.
* now apply Fin.eqb_eq in Ei'.
* destruct (lookup_index_vector I' i) as [ j'' | ] eqn:Ej''.
-- congruence.
-- congruence.
Qed.
Lemma lookup_index_vector_None (m n : nat) (I : Vector.t (Fin.t n) m) (i : Fin.t n) :
(~ Vector.In i I) ->
lookup_index_vector I i = None.
Proof.
intros HNotIn.
destruct (lookup_index_vector I i) eqn:E; auto.
exfalso. apply lookup_index_vector_Some' in E.
contradict HNotIn. eapply vect_nth_In; eauto.
Qed.
Variable X : Type.
Definition fill {m n : nat} (I : Vector.t (Fin.t n) m) (init : Vector.t X n) (V : Vector.t X m) : Vector.t X n :=
tabulate (fun i => match lookup_index_vector I i with
| Some j => V[@j]
| None => init[@i]
end).
Section Test.
Variable (a b x y z : X).
Goal fill [|Fin0; Fin1|] [|x;y;z|] [|a;b|] = [|a;b;z|].
Proof. cbn. reflexivity. Qed.
Goal fill [|Fin2; Fin1|] [|x;y;z|] [|a;b|] = [|x;b;a|].
Proof. cbn. reflexivity. Qed.
Goal fill [|Fin1; Fin0|] [|x;y;z|] [|a;b|] = [|b;a;z|]. Proof. cbn. reflexivity. Qed.
Goal forall (ss : Vector.t X 3), fill [|Fin0; Fin1|] ss [|a;b|] = [|a;b; ss[@Fin2]|].
Proof. intros. cbn. reflexivity. Qed.
End Test.
Variable m n : nat.
Implicit Types (i : Fin.t n) (j : Fin.t m).
Implicit Types (I : Vector.t (Fin.t n) m) (init : Vector.t X n) (V : Vector.t X m).
Lemma fill_correct_nth I init V i j :
dupfree I ->
I[@j] = i ->
(fill I init V)[@i] = V[@j].
Proof.
intros HDup Heq.
unfold fill. simpl_vector.
erewrite lookup_index_vector_Some; eauto.
Qed.
Lemma fill_not_index I init V (i : Fin.t n) :
not_index I i ->
(fill I init V)[@i] = init[@i].
Proof.
intros HNotIn. unfold not_index in HNotIn.
unfold fill. simpl_vector.
erewrite lookup_index_vector_None; eauto.
Qed.
Definition fill_default I (def : X) V :=
fill I (Vector.const def n) V.
Corollary fill_default_not_index I V def i :
not_index I i ->
(fill_default I def V)[@i] = def.
Proof. intros. unfold fill_default. rewrite fill_not_index; auto. apply Vector.const_nth. Qed.
End Fill.
Section loop_map.
Variable A B : Type.
Variable (f : A -> A) (h : A -> bool) (g : A -> B).
Hypothesis step_map_comp : forall a, g (f a) = g a.
Lemma loop_map k a1 a2 :
loop f h a1 k = Some a2 ->
g a2 = g a1.
Proof using step_map_comp.
revert a1 a2. induction k as [ | k' IH]; intros; cbn in *.
- destruct (h a1); now inv H.
- destruct (h a1).
+ now inv H.
+ apply IH in H. now rewrite step_map_comp in H.
Qed.
End loop_map.
Section LiftNM.
Variable sig : finType.
Variable m n : nat.
Variable F : finType.
Variable pM : pTM sig F m.
Variable I : Vector.t ((Fin.t n)) m.
Variable I_dupfree : dupfree I.
Definition LiftTapes_trans :=
fun '(q, sym ) =>
let (q', act) := trans (m := projT1 pM) (q, select I sym) in
(q', fill_default I (None, Nmove) act).
Definition LiftTapes_TM : TM sig n :=
{|
trans := LiftTapes_trans;
start := start (projT1 pM);
halt := halt (m := projT1 pM);
|}.
Definition LiftTapes : pTM sig F n := (LiftTapes_TM; projT2 pM).
Definition selectConf : mconfig sig (state LiftTapes_TM) n -> mconfig sig (state (projT1 pM)) m :=
fun c => mk_mconfig (cstate c) (select I (ctapes c)).
Lemma current_chars_select (t : tapes sig n) :
current_chars (select I t) = select I (current_chars t).
Proof. unfold current_chars, select. apply Vector.eq_nth_iff; intros i ? <-. now simpl_tape. Qed.
Lemma doAct_select (t : tapes sig n) act :
doAct_multi (select I t) act = select I (doAct_multi t (fill_default I (None, Nmove) act)).
Proof using I_dupfree.
unfold doAct_multi, select. apply Vector.eq_nth_iff; intros i ? <-. simpl_tape.
unfold fill_default. f_equal. symmetry. now apply fill_correct_nth.
Qed.
Lemma LiftTapes_comp_step (c1 : mconfig sig (state (projT1 pM)) n) :
step (M := projT1 pM) (selectConf c1) = selectConf (step (M := LiftTapes_TM) c1).
Proof using I_dupfree.
unfold selectConf. unfold step; cbn.
destruct c1 as [q t] eqn:E1.
unfold step in *. cbn -[current_chars doAct_multi] in *.
rewrite current_chars_select.
destruct (trans (q, select I (current_chars t))) as (q', act) eqn:E; cbn.
f_equal. apply doAct_select.
Qed.
Lemma LiftTapes_lift (c1 c2 : mconfig sig (state LiftTapes_TM) n) (k : nat) :
loopM (M := LiftTapes_TM) c1 k = Some c2 ->
loopM (M := projT1 pM) (selectConf c1) k = Some (selectConf c2).
Proof using I_dupfree.
intros HLoop.
eapply loop_lift with (f := step (M := LiftTapes_TM)) (h := haltConf (M := LiftTapes_TM)).
- cbn. auto.
- intros ? _. now apply LiftTapes_comp_step.
- apply HLoop.
Qed.
Lemma LiftTapes_comp_eq (c1 c2 : mconfig sig (state LiftTapes_TM) n) (i : Fin.t n) :
not_index I i ->
step (M := LiftTapes_TM) c1 = c2 ->
(ctapes c2)[@i] = (ctapes c1)[@i].
Proof.
intros HI H. unfold LiftTapes_TM in *.
destruct c1 as [state1 tapes1] eqn:E1, c2 as [state2 tapes2] eqn:E2.
unfold step, select in *. cbn in *.
destruct (trans (state1, select I (current_chars tapes1))) as (q, act) eqn:E3.
inv H. erewrite Vector.nth_map2; eauto. now rewrite fill_default_not_index.
Qed.
Lemma LiftTapes_eq (c1 c2 : mconfig sig (state LiftTapes_TM) n) (k : nat) (i : Fin.t n) :
not_index I i ->
loopM (M := LiftTapes_TM) c1 k = Some c2 ->
(ctapes c2)[@i] = (ctapes c1)[@i].
Proof.
intros Hi HLoop. unfold loopM in HLoop.
eapply loop_map with (g := fun c => (ctapes c)[@i]); eauto.
intros. now apply LiftTapes_comp_eq.
Qed.
Lemma LiftTapes_Realise (R : Rel (tapes sig m) (F * tapes sig m)) :
pM ⊨ R ->
LiftTapes ⊨ LiftTapes_Rel I R.
Proof using I_dupfree.
intros H. split.
- apply (H (select I t) k (selectConf outc)).
now apply (@LiftTapes_lift (initc LiftTapes_TM t) outc k).
- hnf. intros i HI. now apply (@LiftTapes_eq (initc LiftTapes_TM t) outc k i HI).
Qed.
Lemma LiftTapes_unlift (k : nat)
(c1 : mconfig sig (state (LiftTapes_TM)) n)
(c2 : mconfig sig (state (LiftTapes_TM)) m) :
loopM (M := projT1 pM) (selectConf c1) k = Some c2 ->
exists c2' : mconfig sig (state (LiftTapes_TM)) n,
loopM (M := LiftTapes_TM) c1 k = Some c2' /\
c2 = selectConf c2'.
Proof using I_dupfree.
intros HLoop. unfold loopM in *. cbn in *.
apply loop_unlift with (lift:=selectConf) (f:=step (M:=LiftTapes_TM)) (h:=haltConf (M:=LiftTapes_TM)) in HLoop as (c'&HLoop&->).
- exists c'. split; auto.
- auto.
- intros ? _. apply LiftTapes_comp_step.
Qed.
Lemma LiftTapes_Terminates T :
projT1 pM ↓ T ->
projT1 LiftTapes ↓ LiftTapes_T I T.
Proof using I_dupfree.
intros H initTapes k Term. hnf in *.
specialize (H (select I initTapes) k Term) as (outc&H).
pose proof (@LiftTapes_unlift k (initc LiftTapes_TM initTapes) outc H) as (X&X'&->). eauto.
Qed.
Lemma LiftTapes_RealiseIn R k :
pM ⊨c(k) R ->
LiftTapes ⊨c(k) LiftTapes_Rel I R.
Proof using I_dupfree.
intros (H1&H2) % Realise_total. apply Realise_total. split.
- now apply LiftTapes_Realise.
- eapply TerminatesIn_monotone.
+ apply LiftTapes_Terminates; eauto.
+ firstorder.
Qed.
End LiftNM.
Arguments LiftTapes : simpl never.
Notation "pM @ ts" := (LiftTapes pM ts) (at level 41, only parsing).
Lemma smpl_dupfree_helper1 (n : nat) :
dupfree [|Fin.F1 (n := n)|].
Proof. vector_dupfree. Qed.
Lemma smpl_dupfree_helper2 (n : nat) :
dupfree [|Fin.FS (Fin.F1 (n := n))|].
Proof. vector_dupfree. Qed.
Ltac smpl_dupfree :=
once lazymatch goal with
| [ |- dupfree [|Fin.F1 |] ] => apply smpl_dupfree_helper1
| [ |- dupfree [|Fin.FS |] ] => apply smpl_dupfree_helper2
| [ |- dupfree _ ] => now vector_dupfree
end.
Ltac smpl_TM_LiftN :=
once lazymatch goal with
| [ |- LiftTapes _ _ ⊨ _] =>
apply LiftTapes_Realise; [ smpl_dupfree | ]
| [ |- LiftTapes _ _ ⊨c(_) _] => apply LiftTapes_RealiseIn; [ smpl_dupfree | ]
| [ |- projT1 (LiftTapes _ _) ↓ _] => apply LiftTapes_Terminates; [ smpl_dupfree | ]
end.
Smpl Add smpl_TM_LiftN : TM_Correct.
Ltac is_num_const n :=
once lazymatch n with
| O => idtac
| S ?n => is_num_const n
| _ => fail "Not a number"
end.
Ltac do_n_times n t :=
match n with
| O => idtac
| (S ?n') =>
t 0;
do_n_times n' ltac:(fun i => let next := constr:(S i) in t next)
end.
Ltac do_n_times_fin_rect n m t :=
once lazymatch n with
| O => idtac
| S ?n' =>
let m' := eval hnf in (pred m) in
let one := eval cbv in (@Fin.F1 _ : Fin.t m) in
t one;
do_n_times_fin_rect n' m' ltac:(fun i => let next := eval hnf in (Fin.FS i) in t next)
end.
Ltac do_n_times_fin n t := do_n_times_fin_rect n n t.
Ltac vector_contains a vect :=
once lazymatch vect with
| @Vector.nil ?A => fail "Vector doesn't contain" a
| @Vector.cons ?A a ?n ?vect' => idtac
| @Vector.cons ?A ?b ?n ?vect' => vector_contains a vect'
| _ => fail "No vector" vect
end.
Lemma splitAllFin k' n (P : Fin.t (k'+n) -> Prop):
(forall i, P i) -> (forall (i : Fin.t k'), P (Fin.L n i)) /\ (forall (i : Fin.t n), P (Fin.R k' i)).
Proof.
easy.
Qed.
Fixpoint not_indexb {n} (v : list (Fin.t n)) (i : Fin.t n) {struct v}: bool :=
match v with
[]%list => true
| (i'::v)%list => if Fin.eqb i' i then false else not_indexb v i
end.
Lemma not_index_reflect n m (v : Vector.t _ m) (i : Fin.t n):
not_index v i <-> not_indexb (Vector.to_list v) i = true.
Proof.
unfold Vector.to_list. induction v;cbn. easy.
specialize (Fin.eqb_eq _ h i) as H'.
destruct Fin.eqb. { destruct H' as [->]. 2:easy. split. 2:easy. destruct 1. constructor. }
rewrite <- IHv. cbv;intuition. apply H3. now constructor. apply H3.
inversion H4;subst. now specialize (H2 eq_refl). apply Eqdep_dec.inj_pair2_eq_dec in H8;subst. easy.
decide equality.
Qed.
Arguments not_indexb : simpl nomatch.
Lemma not_index_reflect_helper n m (v : Vector.t _ m) (P : Fin.t n -> Prop):
(forall i : Fin.t n, not_index v i -> P i)
-> (forall i : Fin.t n, if not_indexb (Vector.to_list v) i then P i else True).
Proof.
intros H i. specialize (H i). setoid_rewrite not_index_reflect in H. destruct not_indexb;now eauto.
Qed.
Lemma not_index_reflect_helper2 n' (l : list _) (P : Fin.t n' -> Prop):
(forall i : Fin.t n', if not_indexb l i then P i else True)
-> (forall i : Fin.t n', not_index (Vector.of_list l) i -> P i).
Proof.
intros H i. specialize (H i). setoid_rewrite not_index_reflect.
rewrite VectorSpec.to_list_of_list_opp. destruct not_indexb;now eauto.
Qed.
Local Definition _Flag_DisableWarning := Lock unit.
Local Definition _flag_DisableWarning : _Flag_DisableWarning := tt.
Ltac simpl_not_in_vector_one :=
let moveCnstLeft :=
let rec loop k n :=
lazymatch n with
S ?n => loop uconstr:(S k) n
| _ => uconstr:(k + n)
end
in loop 0
in
once lazymatch goal with
| [ H : forall i : Fin.t ?n, not_index ?vect i -> _ |- _ ] =>
specialize (not_index_reflect_helper H);clear H;intros H;
let n' := moveCnstLeft n in
change n with n' in H at 1;
let tmp := fresh "tmp" in
apply splitAllFin in H as [tmp H];
cbn [not_indexb Vector.to_list Fin.R Vector.caseS Fin.eqb Vector.nth] in H;
let helper i :=
let H' := fresh H "_0" in
assert (H':= tmp i);
cbn in H';
once lazymatch type of H' with
| if (if Nat.eqb ?k ?k then false else true) then _ else True =>
fail 1000 "arguments for not_indexb should have been set to [simpl nomatch]";clear H'
| if not_indexb (?i::_)%list ?i then _ else True => clear H'
| ?i = ?j => idtac
| True => clear H'
| ?G => idtac "simpl_not_in_vector_one is not intended for this kind of non-ground tape index" G
end
in
once lazymatch type of tmp with
forall i : Fin.t ?n, _ =>
do_n_times_fin n helper;clear tmp
end;
match type of H with
| forall i : Fin.t 0, _ => clear H
| forall u, if _ then _ else _ =>
specialize (not_index_reflect_helper2 H);clear H;intros H;cbn [Vector.of_list] in H
| forall i : Fin.t _, _[@ _] = _[@ _] => idtac
| ?t => match goal with
| H : _Flag_DisableWarning |- _ => idtac
| |- _ => idtac "unexpected case in simpl_not_in_vector_one" t
end
end
end.
Ltac simpl_not_in_vector := repeat simpl_not_in_vector_one.
Ltac simpl_not_in := repeat simpl_not_in_vector.
Set Default Proof Using "Type".
Definition select (m n: nat) (X: Type) (I : Vector.t (Fin.t n) m) (V : Vector.t X n) : Vector.t X m :=
Vector.map (Vector.nth V) I.
Corollary select_nth m n X (I : Vector.t (Fin.t n) m) (V : Vector.t X n) (k : Fin.t m) :
(select I V) [@ k] = V [@ (I [@ k])].
Proof. now apply Vector.nth_map. Qed.
Section LiftTapes_Rel.
Variable (sig : finType) (F : Type).
Variable m n : nat.
Variable I : Vector.t (Fin.t n) m.
Definition not_index (i : Fin.t n) : Prop :=
~ Vector.In i I.
Variable (R : pRel sig F m).
Definition LiftTapes_select_Rel : pRel sig F n :=
fun t '(y, t') => R (select I t) (y, select I t').
Definition LiftTapes_eq_Rel : pRel sig F n :=
ignoreParam (fun t t' => forall i : Fin.t n, not_index i -> t'[@i] = t[@i]).
Definition LiftTapes_Rel := LiftTapes_select_Rel ∩ LiftTapes_eq_Rel.
Variable T : tRel sig m.
Definition LiftTapes_T : tRel sig n :=
fun t k => T (select I t) k.
End LiftTapes_Rel.
Arguments not_index : simpl never.
Arguments LiftTapes_select_Rel {sig F m n} I R x y /.
Arguments LiftTapes_eq_Rel {sig F m n} I x y /.
Arguments LiftTapes_Rel {sig F m n } I R x y /.
Arguments LiftTapes_T {sig m n} I T x y /.
Lemma vector_hd_nth (X : Type) (n : nat) (xs : Vector.t X (S n)) : Vector.hd xs = xs[@Fin0].
Proof. now destruct_vector. Qed.
Lemma vector_tl_nth (X : Type) (n : nat) (i : Fin.t (S n)) (xs : Vector.t X (S (S n))) : (Vector.tl xs)[@i] = xs[@Fin.FS i].
Proof. now destruct_vector. Qed.
Section Fill.
Fixpoint lookup_index_vector {m n : nat} (I : Vector.t (Fin.t n) m) : Fin.t n -> option (Fin.t m) :=
match I with
| Vector.nil _ => fun (i : Fin.t n) => None
| Vector.cons _ i' m' I' =>
fun (i : Fin.t n) =>
if Fin.eqb i i' then Some Fin0
else match lookup_index_vector I' i with
| Some j => Some (Fin.FS j)
| None => None
end
end.
Lemma Some_inj (X : Type) (x y : X) :
Some x = Some y -> x = y.
Proof. congruence. Qed.
Lemma lookup_index_vector_Some (m n : nat) (I : Vector.t (Fin.t n) m) (i : Fin.t n) (j : Fin.t m) :
dupfree I ->
I[@j] = i ->
lookup_index_vector I i = Some j.
Proof.
induction 1 as [ | m i' I' H1 H2 IH]; intros Heq; cbn in *.
- contradict (fin_destruct_O j).
- destruct (Fin.eqb i i') eqn:Eqb; cbn in *.
+ f_equal. apply Fin.eqb_eq in Eqb as ->.
pose proof (fin_destruct_S j) as [(j'&->) | ->]; cbn in *.
* exfalso. contradict H1. eapply vect_nth_In; eauto.
* reflexivity.
+ destruct (lookup_index_vector I' i) as [j' | ] eqn:El.
* pose proof (fin_destruct_S j) as [(j''&->) | ->]; cbn in *.
-- specialize IH with (1 := Heq). apply Some_inj in IH as ->. reflexivity.
-- subst. enough (Fin.eqb i i = true) by congruence. now apply Fin.eqb_eq.
* exfalso. pose proof (fin_destruct_S j) as [(j''&->) | ->]; cbn in *.
-- specialize IH with (1 := Heq). congruence.
-- subst. enough (Fin.eqb i i = true) by congruence. now apply Fin.eqb_eq.
Qed.
Lemma lookup_index_vector_Some' (m n : nat) (I : Vector.t (Fin.t n) m) (i : Fin.t n) (j : Fin.t m) :
lookup_index_vector I i = Some j ->
I[@j] = i.
Proof.
revert i j. induction I as [ | i' n' I' IH ]; intros i j Hj.
- destruct_fin j.
- pose proof (fin_destruct_S j) as [(j'&->) | ->]; cbn in *.
+ destruct (Fin.eqb i i'); inv Hj.
destruct (lookup_index_vector I' i) as [ j'' | ] eqn:Ej''.
* apply Some_inj in H0. apply Fin.FS_inj in H0 as ->. now apply IH.
* congruence.
+ destruct (Fin.eqb i i') eqn:Ei'.
* now apply Fin.eqb_eq in Ei'.
* destruct (lookup_index_vector I' i) as [ j'' | ] eqn:Ej''.
-- congruence.
-- congruence.
Qed.
Lemma lookup_index_vector_None (m n : nat) (I : Vector.t (Fin.t n) m) (i : Fin.t n) :
(~ Vector.In i I) ->
lookup_index_vector I i = None.
Proof.
intros HNotIn.
destruct (lookup_index_vector I i) eqn:E; auto.
exfalso. apply lookup_index_vector_Some' in E.
contradict HNotIn. eapply vect_nth_In; eauto.
Qed.
Variable X : Type.
Definition fill {m n : nat} (I : Vector.t (Fin.t n) m) (init : Vector.t X n) (V : Vector.t X m) : Vector.t X n :=
tabulate (fun i => match lookup_index_vector I i with
| Some j => V[@j]
| None => init[@i]
end).
Section Test.
Variable (a b x y z : X).
Goal fill [|Fin0; Fin1|] [|x;y;z|] [|a;b|] = [|a;b;z|].
Proof. cbn. reflexivity. Qed.
Goal fill [|Fin2; Fin1|] [|x;y;z|] [|a;b|] = [|x;b;a|].
Proof. cbn. reflexivity. Qed.
Goal fill [|Fin1; Fin0|] [|x;y;z|] [|a;b|] = [|b;a;z|]. Proof. cbn. reflexivity. Qed.
Goal forall (ss : Vector.t X 3), fill [|Fin0; Fin1|] ss [|a;b|] = [|a;b; ss[@Fin2]|].
Proof. intros. cbn. reflexivity. Qed.
End Test.
Variable m n : nat.
Implicit Types (i : Fin.t n) (j : Fin.t m).
Implicit Types (I : Vector.t (Fin.t n) m) (init : Vector.t X n) (V : Vector.t X m).
Lemma fill_correct_nth I init V i j :
dupfree I ->
I[@j] = i ->
(fill I init V)[@i] = V[@j].
Proof.
intros HDup Heq.
unfold fill. simpl_vector.
erewrite lookup_index_vector_Some; eauto.
Qed.
Lemma fill_not_index I init V (i : Fin.t n) :
not_index I i ->
(fill I init V)[@i] = init[@i].
Proof.
intros HNotIn. unfold not_index in HNotIn.
unfold fill. simpl_vector.
erewrite lookup_index_vector_None; eauto.
Qed.
Definition fill_default I (def : X) V :=
fill I (Vector.const def n) V.
Corollary fill_default_not_index I V def i :
not_index I i ->
(fill_default I def V)[@i] = def.
Proof. intros. unfold fill_default. rewrite fill_not_index; auto. apply Vector.const_nth. Qed.
End Fill.
Section loop_map.
Variable A B : Type.
Variable (f : A -> A) (h : A -> bool) (g : A -> B).
Hypothesis step_map_comp : forall a, g (f a) = g a.
Lemma loop_map k a1 a2 :
loop f h a1 k = Some a2 ->
g a2 = g a1.
Proof using step_map_comp.
revert a1 a2. induction k as [ | k' IH]; intros; cbn in *.
- destruct (h a1); now inv H.
- destruct (h a1).
+ now inv H.
+ apply IH in H. now rewrite step_map_comp in H.
Qed.
End loop_map.
Section LiftNM.
Variable sig : finType.
Variable m n : nat.
Variable F : finType.
Variable pM : pTM sig F m.
Variable I : Vector.t ((Fin.t n)) m.
Variable I_dupfree : dupfree I.
Definition LiftTapes_trans :=
fun '(q, sym ) =>
let (q', act) := trans (m := projT1 pM) (q, select I sym) in
(q', fill_default I (None, Nmove) act).
Definition LiftTapes_TM : TM sig n :=
{|
trans := LiftTapes_trans;
start := start (projT1 pM);
halt := halt (m := projT1 pM);
|}.
Definition LiftTapes : pTM sig F n := (LiftTapes_TM; projT2 pM).
Definition selectConf : mconfig sig (state LiftTapes_TM) n -> mconfig sig (state (projT1 pM)) m :=
fun c => mk_mconfig (cstate c) (select I (ctapes c)).
Lemma current_chars_select (t : tapes sig n) :
current_chars (select I t) = select I (current_chars t).
Proof. unfold current_chars, select. apply Vector.eq_nth_iff; intros i ? <-. now simpl_tape. Qed.
Lemma doAct_select (t : tapes sig n) act :
doAct_multi (select I t) act = select I (doAct_multi t (fill_default I (None, Nmove) act)).
Proof using I_dupfree.
unfold doAct_multi, select. apply Vector.eq_nth_iff; intros i ? <-. simpl_tape.
unfold fill_default. f_equal. symmetry. now apply fill_correct_nth.
Qed.
Lemma LiftTapes_comp_step (c1 : mconfig sig (state (projT1 pM)) n) :
step (M := projT1 pM) (selectConf c1) = selectConf (step (M := LiftTapes_TM) c1).
Proof using I_dupfree.
unfold selectConf. unfold step; cbn.
destruct c1 as [q t] eqn:E1.
unfold step in *. cbn -[current_chars doAct_multi] in *.
rewrite current_chars_select.
destruct (trans (q, select I (current_chars t))) as (q', act) eqn:E; cbn.
f_equal. apply doAct_select.
Qed.
Lemma LiftTapes_lift (c1 c2 : mconfig sig (state LiftTapes_TM) n) (k : nat) :
loopM (M := LiftTapes_TM) c1 k = Some c2 ->
loopM (M := projT1 pM) (selectConf c1) k = Some (selectConf c2).
Proof using I_dupfree.
intros HLoop.
eapply loop_lift with (f := step (M := LiftTapes_TM)) (h := haltConf (M := LiftTapes_TM)).
- cbn. auto.
- intros ? _. now apply LiftTapes_comp_step.
- apply HLoop.
Qed.
Lemma LiftTapes_comp_eq (c1 c2 : mconfig sig (state LiftTapes_TM) n) (i : Fin.t n) :
not_index I i ->
step (M := LiftTapes_TM) c1 = c2 ->
(ctapes c2)[@i] = (ctapes c1)[@i].
Proof.
intros HI H. unfold LiftTapes_TM in *.
destruct c1 as [state1 tapes1] eqn:E1, c2 as [state2 tapes2] eqn:E2.
unfold step, select in *. cbn in *.
destruct (trans (state1, select I (current_chars tapes1))) as (q, act) eqn:E3.
inv H. erewrite Vector.nth_map2; eauto. now rewrite fill_default_not_index.
Qed.
Lemma LiftTapes_eq (c1 c2 : mconfig sig (state LiftTapes_TM) n) (k : nat) (i : Fin.t n) :
not_index I i ->
loopM (M := LiftTapes_TM) c1 k = Some c2 ->
(ctapes c2)[@i] = (ctapes c1)[@i].
Proof.
intros Hi HLoop. unfold loopM in HLoop.
eapply loop_map with (g := fun c => (ctapes c)[@i]); eauto.
intros. now apply LiftTapes_comp_eq.
Qed.
Lemma LiftTapes_Realise (R : Rel (tapes sig m) (F * tapes sig m)) :
pM ⊨ R ->
LiftTapes ⊨ LiftTapes_Rel I R.
Proof using I_dupfree.
intros H. split.
- apply (H (select I t) k (selectConf outc)).
now apply (@LiftTapes_lift (initc LiftTapes_TM t) outc k).
- hnf. intros i HI. now apply (@LiftTapes_eq (initc LiftTapes_TM t) outc k i HI).
Qed.
Lemma LiftTapes_unlift (k : nat)
(c1 : mconfig sig (state (LiftTapes_TM)) n)
(c2 : mconfig sig (state (LiftTapes_TM)) m) :
loopM (M := projT1 pM) (selectConf c1) k = Some c2 ->
exists c2' : mconfig sig (state (LiftTapes_TM)) n,
loopM (M := LiftTapes_TM) c1 k = Some c2' /\
c2 = selectConf c2'.
Proof using I_dupfree.
intros HLoop. unfold loopM in *. cbn in *.
apply loop_unlift with (lift:=selectConf) (f:=step (M:=LiftTapes_TM)) (h:=haltConf (M:=LiftTapes_TM)) in HLoop as (c'&HLoop&->).
- exists c'. split; auto.
- auto.
- intros ? _. apply LiftTapes_comp_step.
Qed.
Lemma LiftTapes_Terminates T :
projT1 pM ↓ T ->
projT1 LiftTapes ↓ LiftTapes_T I T.
Proof using I_dupfree.
intros H initTapes k Term. hnf in *.
specialize (H (select I initTapes) k Term) as (outc&H).
pose proof (@LiftTapes_unlift k (initc LiftTapes_TM initTapes) outc H) as (X&X'&->). eauto.
Qed.
Lemma LiftTapes_RealiseIn R k :
pM ⊨c(k) R ->
LiftTapes ⊨c(k) LiftTapes_Rel I R.
Proof using I_dupfree.
intros (H1&H2) % Realise_total. apply Realise_total. split.
- now apply LiftTapes_Realise.
- eapply TerminatesIn_monotone.
+ apply LiftTapes_Terminates; eauto.
+ firstorder.
Qed.
End LiftNM.
Arguments LiftTapes : simpl never.
Notation "pM @ ts" := (LiftTapes pM ts) (at level 41, only parsing).
Lemma smpl_dupfree_helper1 (n : nat) :
dupfree [|Fin.F1 (n := n)|].
Proof. vector_dupfree. Qed.
Lemma smpl_dupfree_helper2 (n : nat) :
dupfree [|Fin.FS (Fin.F1 (n := n))|].
Proof. vector_dupfree. Qed.
Ltac smpl_dupfree :=
once lazymatch goal with
| [ |- dupfree [|Fin.F1 |] ] => apply smpl_dupfree_helper1
| [ |- dupfree [|Fin.FS |] ] => apply smpl_dupfree_helper2
| [ |- dupfree _ ] => now vector_dupfree
end.
Ltac smpl_TM_LiftN :=
once lazymatch goal with
| [ |- LiftTapes _ _ ⊨ _] =>
apply LiftTapes_Realise; [ smpl_dupfree | ]
| [ |- LiftTapes _ _ ⊨c(_) _] => apply LiftTapes_RealiseIn; [ smpl_dupfree | ]
| [ |- projT1 (LiftTapes _ _) ↓ _] => apply LiftTapes_Terminates; [ smpl_dupfree | ]
end.
Smpl Add smpl_TM_LiftN : TM_Correct.
Ltac is_num_const n :=
once lazymatch n with
| O => idtac
| S ?n => is_num_const n
| _ => fail "Not a number"
end.
Ltac do_n_times n t :=
match n with
| O => idtac
| (S ?n') =>
t 0;
do_n_times n' ltac:(fun i => let next := constr:(S i) in t next)
end.
Ltac do_n_times_fin_rect n m t :=
once lazymatch n with
| O => idtac
| S ?n' =>
let m' := eval hnf in (pred m) in
let one := eval cbv in (@Fin.F1 _ : Fin.t m) in
t one;
do_n_times_fin_rect n' m' ltac:(fun i => let next := eval hnf in (Fin.FS i) in t next)
end.
Ltac do_n_times_fin n t := do_n_times_fin_rect n n t.
Ltac vector_contains a vect :=
once lazymatch vect with
| @Vector.nil ?A => fail "Vector doesn't contain" a
| @Vector.cons ?A a ?n ?vect' => idtac
| @Vector.cons ?A ?b ?n ?vect' => vector_contains a vect'
| _ => fail "No vector" vect
end.
Lemma splitAllFin k' n (P : Fin.t (k'+n) -> Prop):
(forall i, P i) -> (forall (i : Fin.t k'), P (Fin.L n i)) /\ (forall (i : Fin.t n), P (Fin.R k' i)).
Proof.
easy.
Qed.
Fixpoint not_indexb {n} (v : list (Fin.t n)) (i : Fin.t n) {struct v}: bool :=
match v with
[]%list => true
| (i'::v)%list => if Fin.eqb i' i then false else not_indexb v i
end.
Lemma not_index_reflect n m (v : Vector.t _ m) (i : Fin.t n):
not_index v i <-> not_indexb (Vector.to_list v) i = true.
Proof.
unfold Vector.to_list. induction v;cbn. easy.
specialize (Fin.eqb_eq _ h i) as H'.
destruct Fin.eqb. { destruct H' as [->]. 2:easy. split. 2:easy. destruct 1. constructor. }
rewrite <- IHv. cbv;intuition. apply H3. now constructor. apply H3.
inversion H4;subst. now specialize (H2 eq_refl). apply Eqdep_dec.inj_pair2_eq_dec in H8;subst. easy.
decide equality.
Qed.
Arguments not_indexb : simpl nomatch.
Lemma not_index_reflect_helper n m (v : Vector.t _ m) (P : Fin.t n -> Prop):
(forall i : Fin.t n, not_index v i -> P i)
-> (forall i : Fin.t n, if not_indexb (Vector.to_list v) i then P i else True).
Proof.
intros H i. specialize (H i). setoid_rewrite not_index_reflect in H. destruct not_indexb;now eauto.
Qed.
Lemma not_index_reflect_helper2 n' (l : list _) (P : Fin.t n' -> Prop):
(forall i : Fin.t n', if not_indexb l i then P i else True)
-> (forall i : Fin.t n', not_index (Vector.of_list l) i -> P i).
Proof.
intros H i. specialize (H i). setoid_rewrite not_index_reflect.
rewrite VectorSpec.to_list_of_list_opp. destruct not_indexb;now eauto.
Qed.
Local Definition _Flag_DisableWarning := Lock unit.
Local Definition _flag_DisableWarning : _Flag_DisableWarning := tt.
Ltac simpl_not_in_vector_one :=
let moveCnstLeft :=
let rec loop k n :=
lazymatch n with
S ?n => loop uconstr:(S k) n
| _ => uconstr:(k + n)
end
in loop 0
in
once lazymatch goal with
| [ H : forall i : Fin.t ?n, not_index ?vect i -> _ |- _ ] =>
specialize (not_index_reflect_helper H);clear H;intros H;
let n' := moveCnstLeft n in
change n with n' in H at 1;
let tmp := fresh "tmp" in
apply splitAllFin in H as [tmp H];
cbn [not_indexb Vector.to_list Fin.R Vector.caseS Fin.eqb Vector.nth] in H;
let helper i :=
let H' := fresh H "_0" in
assert (H':= tmp i);
cbn in H';
once lazymatch type of H' with
| if (if Nat.eqb ?k ?k then false else true) then _ else True =>
fail 1000 "arguments for not_indexb should have been set to [simpl nomatch]";clear H'
| if not_indexb (?i::_)%list ?i then _ else True => clear H'
| ?i = ?j => idtac
| True => clear H'
| ?G => idtac "simpl_not_in_vector_one is not intended for this kind of non-ground tape index" G
end
in
once lazymatch type of tmp with
forall i : Fin.t ?n, _ =>
do_n_times_fin n helper;clear tmp
end;
match type of H with
| forall i : Fin.t 0, _ => clear H
| forall u, if _ then _ else _ =>
specialize (not_index_reflect_helper2 H);clear H;intros H;cbn [Vector.of_list] in H
| forall i : Fin.t _, _[@ _] = _[@ _] => idtac
| ?t => match goal with
| H : _Flag_DisableWarning |- _ => idtac
| |- _ => idtac "unexpected case in simpl_not_in_vector_one" t
end
end
end.
Ltac simpl_not_in_vector := repeat simpl_not_in_vector_one.
Ltac simpl_not_in := repeat simpl_not_in_vector.