(* * Tactics for Fin.t *)
(* Author: Maximilian Wuttke and Fabian Kunze *)
From Undecidability.Shared.Libs.PSL Require Import Base.
Require Import Coq.Vectors.Fin.
Lemma fin_destruct_S (n : nat) (i : Fin.t (S n)) :
{ i' | i = Fin.FS i' } + { i = Fin.F1 }.
Proof.
refine (match i in (Fin.t n')
with
| Fin.F1 => _
| Fin.FS i' => _
end); eauto.
(*
refine (match i as i0 in (Fin.t n') return
match n' with
| O => fun _ : Fin.t 0 => unit
| S n'' => fun i0 : Fin.t (S n'') => { i' | i0 = Fin.FS i' } + { i0 = Fin0}
end i0
with
| Fin.F1 => _
| Fin.FS i' => _
end); eauto.
*)
Defined.
Lemma fin_destruct_O (i : Fin.t 0) : Empty_set.
Proof. refine (match i with end). Defined.
Lemma fin_destruct_add
: forall (n m : nat) (i : Fin.t (n+m)),
{i' : Fin.t n | i = Fin.L _ i'} + {i' : Fin.t m | i = Fin.R _ i'}.
Proof.
induction n;cbn. right. now eauto.
intros ? i. destruct (fin_destruct_S i) as [[i' ->]| ->].
-destruct (IHn _ i') as [ [? ->] | [? ->]].
--left. now eexists (Fin.FS _).
--right. eauto.
-left. now exists Fin.F1.
Qed.
Ltac destruct_fin i :=
lazymatch type of i with
| Fin.t (S ?n) =>
let i' := fresh i in
pose proof fin_destruct_S i as [ (i'&->) | -> ];
[ destruct_fin i'
| idtac]
| Fin.t O =>
pose proof fin_destruct_O i as []
| Fin.t (_ + _) =>
let i' := fresh i in
pose proof fin_destruct_add i as [ (i'&->) | (i'&->)];destruct_fin i'
| Fin.t _ => idtac
end.
Goal True.
Proof.
assert (i : Fin.t 4) by repeat constructor.
enough (i = i) by tauto.
destruct_fin i.
all: reflexivity.
Qed.
Lemma Fin_L_fillive (n m : nat) (i1 i2 : Fin.t n) :
Fin.L m i1 = Fin.L m i2 -> i1 = i2.
Proof.
induction n as [ | n' IH].
- destruct_fin i1.
- destruct_fin i1; destruct_fin i2; cbn in *; auto; try congruence.
intros H%Fin.FS_inj. now apply IH in H as ->.
Qed.
Lemma Fin_R_fillive (n m : nat) (i1 i2 : Fin.t n) :
Fin.R m i1 = Fin.R m i2 -> i1 = i2.
Proof.
induction m as [ | n' IH]; cbn.
- auto.
- intros H % Fin.FS_inj. auto.
Qed.
Lemma Fin_eqb_R_R m n (i i' : Fin.t n):
Fin.eqb (Fin.R m i) (Fin.R m i') = Fin.eqb i i'.
Proof. induction m;cbn. all:congruence. Qed.
Lemma Fin_eqb_L_L m n (i i' : Fin.t n):
Fin.eqb (Fin.L m i) (Fin.L m i') = Fin.eqb i i'.
Proof.
revert i i'. induction n;intros i i'; destruct_fin i;destruct_fin i';cbn.
4:rewrite !Nat.eqb_refl. all:congruence.
Qed.
Lemma Fin_eqb_R_L m n (i : Fin.t n) (i' : Fin.t m):
Fin.eqb(Fin.R n i') (Fin.L m i) = false.
Proof.
revert m i i'. induction n;intros m i i'; destruct_fin i;destruct_fin i';cbn. all:easy.
Qed.
Lemma Fin_eqb_L_R m n (i : Fin.t n) (i' : Fin.t m):
Fin.eqb (Fin.L m i) (Fin.R n i') = false.
Proof.
revert m i i'. induction n;intros m i i'; destruct_fin i;destruct_fin i';cbn. all:easy.
Qed.
(* Author: Maximilian Wuttke and Fabian Kunze *)
From Undecidability.Shared.Libs.PSL Require Import Base.
Require Import Coq.Vectors.Fin.
Lemma fin_destruct_S (n : nat) (i : Fin.t (S n)) :
{ i' | i = Fin.FS i' } + { i = Fin.F1 }.
Proof.
refine (match i in (Fin.t n')
with
| Fin.F1 => _
| Fin.FS i' => _
end); eauto.
(*
refine (match i as i0 in (Fin.t n') return
match n' with
| O => fun _ : Fin.t 0 => unit
| S n'' => fun i0 : Fin.t (S n'') => { i' | i0 = Fin.FS i' } + { i0 = Fin0}
end i0
with
| Fin.F1 => _
| Fin.FS i' => _
end); eauto.
*)
Defined.
Lemma fin_destruct_O (i : Fin.t 0) : Empty_set.
Proof. refine (match i with end). Defined.
Lemma fin_destruct_add
: forall (n m : nat) (i : Fin.t (n+m)),
{i' : Fin.t n | i = Fin.L _ i'} + {i' : Fin.t m | i = Fin.R _ i'}.
Proof.
induction n;cbn. right. now eauto.
intros ? i. destruct (fin_destruct_S i) as [[i' ->]| ->].
-destruct (IHn _ i') as [ [? ->] | [? ->]].
--left. now eexists (Fin.FS _).
--right. eauto.
-left. now exists Fin.F1.
Qed.
Ltac destruct_fin i :=
lazymatch type of i with
| Fin.t (S ?n) =>
let i' := fresh i in
pose proof fin_destruct_S i as [ (i'&->) | -> ];
[ destruct_fin i'
| idtac]
| Fin.t O =>
pose proof fin_destruct_O i as []
| Fin.t (_ + _) =>
let i' := fresh i in
pose proof fin_destruct_add i as [ (i'&->) | (i'&->)];destruct_fin i'
| Fin.t _ => idtac
end.
Goal True.
Proof.
assert (i : Fin.t 4) by repeat constructor.
enough (i = i) by tauto.
destruct_fin i.
all: reflexivity.
Qed.
Lemma Fin_L_fillive (n m : nat) (i1 i2 : Fin.t n) :
Fin.L m i1 = Fin.L m i2 -> i1 = i2.
Proof.
induction n as [ | n' IH].
- destruct_fin i1.
- destruct_fin i1; destruct_fin i2; cbn in *; auto; try congruence.
intros H%Fin.FS_inj. now apply IH in H as ->.
Qed.
Lemma Fin_R_fillive (n m : nat) (i1 i2 : Fin.t n) :
Fin.R m i1 = Fin.R m i2 -> i1 = i2.
Proof.
induction m as [ | n' IH]; cbn.
- auto.
- intros H % Fin.FS_inj. auto.
Qed.
Lemma Fin_eqb_R_R m n (i i' : Fin.t n):
Fin.eqb (Fin.R m i) (Fin.R m i') = Fin.eqb i i'.
Proof. induction m;cbn. all:congruence. Qed.
Lemma Fin_eqb_L_L m n (i i' : Fin.t n):
Fin.eqb (Fin.L m i) (Fin.L m i') = Fin.eqb i i'.
Proof.
revert i i'. induction n;intros i i'; destruct_fin i;destruct_fin i';cbn.
4:rewrite !Nat.eqb_refl. all:congruence.
Qed.
Lemma Fin_eqb_R_L m n (i : Fin.t n) (i' : Fin.t m):
Fin.eqb(Fin.R n i') (Fin.L m i) = false.
Proof.
revert m i i'. induction n;intros m i i'; destruct_fin i;destruct_fin i';cbn. all:easy.
Qed.
Lemma Fin_eqb_L_R m n (i : Fin.t n) (i' : Fin.t m):
Fin.eqb (Fin.L m i) (Fin.R n i') = false.
Proof.
revert m i i'. induction n;intros m i i'; destruct_fin i;destruct_fin i';cbn. all:easy.
Qed.