Require Import List.
Require Import Undecidability.PCP.PCP.
(* A string is a list of symbols. *)
Definition string X := list X.
Module RuleNotation.
Notation "x / y" := (x, y).
End RuleNotation.
Import RuleNotation.
(* A string rewriting system SRS is a list of rules x / y
such that x rewrites to y. *)
Definition SRS X := list (string X * string X).
(* If u / v is a rewriting rule, then x ++ u ++ y rewrites to x ++ v ++ y. *)
Inductive rew {X : Type} (R : SRS X) : string X -> string X -> Prop :=
rewB x y u v : In (u / v) R -> rew R (x ++ u ++ y) (x ++ v ++ y).
(* rewt is the reflexive, transitive closure of rew. *)
Inductive rewt {X : Type} (R : SRS X) : string X -> string X -> Prop :=
rewR z : rewt R z z
| rewS x y z : rew R x y -> rewt R y z -> rewt R x z.
(* String rewriting SR is
given a string rewriting system R and two strings x and y,
determine whether x rewrites to y in R. *)
Definition SR : SRS nat * string nat * string nat -> Prop :=
fun '(R, x, y) => rewt R x y.
(* String rewriting with a halting symbol SRH is
given a string rewriting system R, a string x and a symbol a,
determine whether x rewrites in R to some y that contains a. *)
Definition SRH : SRS nat * string nat * nat -> Prop :=
fun '(R, x, a) => exists y, rewt R x y /\ In a y.
Definition swap {X Y} : X * Y -> Y * X := fun '(x,y) => (y,x).
(* Thue system reachability TSR is
given a string rewriting system R and two strings x and y,
determine whether x is equivalent to y in R. *)
Definition TSR : SRS nat * string nat * string nat -> Prop :=
fun '(R, x, y) => rewt (R ++ map swap R) x y.
(* Thue system reachability with a halting symbol TSRH is
given a string rewriting system R, a string x and a symbol a,
determine whether x is equivalent in R to somy y that contains a. *)
Definition TSRH : SRS nat * string nat * nat -> Prop :=
fun '(R, x, a) => exists y, rewt (R ++ map swap R) x y /\ In a y.