Require Import Undecidability.TM.SBTM.
Require Import Undecidability.Synthetic.Definitions.
Require Import Equations.Equations.
Section fixM.
Variable M : SBTM.
Definition M' : SBTM.
Proof.
exists (1 + num_states M).
intros [q o].
dependent elimination q.
- destruct (trans M (Fin.F1, o)) as [[[q' w] m] | ].
dependent elimination q'.
+ exact (Some (Fin.F1, w, m)).
+ exact (Some (Fin.FS (Fin.FS t), w, m)).
+ exact (Some (Fin.FS Fin.F1, None, Nmove)).
- dependent elimination t.
+ exact None.
+ destruct (trans M (Fin.FS t, o)) as [[[q' w] m] | ].
dependent elimination q'.
* exact (Some (Fin.F1, w, m)).
* exact (Some (Fin.FS (Fin.FS t0), w, m)).
* exact (Some (Fin.FS Fin.F1, None, Nmove)).
Defined. (* because definition *)
Lemma spec1 c : trans M' (Fin.FS Fin.F1, c) = None.
Proof. reflexivity. Qed.
Lemma spec2 c q' : trans M' (q', c) = None -> q' = Fin.FS Fin.F1.
Proof.
cbn. dependent elimination q'.
- cbn. destruct (trans M (Fin.F1, c)) as [[[q' w] m] | ].
dependent elimination q'; cbn; congruence. inversion 1.
- cbn. dependent elimination t; cbn.
+ reflexivity.
+ destruct (trans M) as [[[q' w] m] | ].
dependent elimination q'; cbn; congruence. inversion 1.
Qed.
Definition conv_state (q : Fin.t (S (num_states M))) : Fin.t (S (1 + num_states M)).
Proof.
dependent elimination q. exact Fin.F1. exact (Fin.FS (Fin.FS t)).
Defined. (* because definition *)
Lemma spec3 q c : trans M (q, c) = None -> trans M' (conv_state q, c) = Some (Fin.FS Fin.F1, None, Nmove).
Proof.
intros H. cbn. dependent elimination q; cbn.
- destruct trans as [[[q' w] m] | ].
dependent elimination q'; cbn. all:congruence.
- destruct trans as [[[q' w] m] | ].
dependent elimination q'; cbn. all:congruence.
Qed.
Lemma spec4 q c q' w m : trans M (q, c) = Some (q', w, m) -> trans M' (conv_state q, c) = Some (conv_state q', w, m).
Proof.
cbn. dependent elimination q; cbn; intros H.
- rewrite H.
dependent elimination q'; cbn. all:congruence.
- rewrite H. revert H.
dependent elimination q'; cbn. all:congruence.
Qed.
End fixM.
Lemma reduction :
HaltSBTM ⪯ HaltSBTMu.
Proof.
unshelve eexists.
- intros [M t]. refine (_, t). exists (@M' M). exists (Fin.FS Fin.F1). split. eapply spec1. eapply spec2.
- intros [M t]. cbn. split.
+ intros (q' & t' & H). assert (conv_state M Fin.F1 = Fin.F1) as E by reflexivity. cbn [Nat.add] in E.
rewrite <- E. clear E. revert H.
generalize (@Fin.F1 (num_states M)) at 1 2. intros q H. exists t'.
induction H.
* econstructor. now eapply spec3. cbn. econstructor. reflexivity.
* econstructor. 2:eassumption. now eapply spec4.
+ intros (t' & H).
assert (conv_state M Fin.F1 = Fin.F1) as E by reflexivity. cbn [Nat.add] in E.
rewrite <- E in H. clear E. revert H.
generalize (@Fin.F1 (num_states M)) at 1 3. intros q H.
remember (conv_state M q) as q_.
induction H in q, Heqq_ |- *; subst.
* eexists. econstructor. eapply spec2 in H. dependent elimination q. inversion H. inversion H.
* destruct t as [[ls c] rs]. destruct (trans M (q, c)) as [[[q'_ w_] m_] | ] eqn:Et;
pose proof (ET := Et).
-- eapply spec4 in Et. cbn [curr num_states M' Nat.add] in H. cbn [Nat.add] in Et. rewrite H in Et.
inversion Et; subst; clear Et.
edestruct IHeval as (? & ? & ?). reflexivity. exists x, x0. econstructor. exact ET. eassumption.
-- eapply spec3 in Et. cbn [curr num_states M' Nat.add] in H. cbn [Nat.add] in Et. rewrite H in Et.
inversion Et; subst; clear Et. exists q, (ls, c, rs).
econstructor 1. eassumption.
Unshelve. exact q. exact t.
Qed.
Require Import Undecidability.Synthetic.Definitions.
Require Import Equations.Equations.
Section fixM.
Variable M : SBTM.
Definition M' : SBTM.
Proof.
exists (1 + num_states M).
intros [q o].
dependent elimination q.
- destruct (trans M (Fin.F1, o)) as [[[q' w] m] | ].
dependent elimination q'.
+ exact (Some (Fin.F1, w, m)).
+ exact (Some (Fin.FS (Fin.FS t), w, m)).
+ exact (Some (Fin.FS Fin.F1, None, Nmove)).
- dependent elimination t.
+ exact None.
+ destruct (trans M (Fin.FS t, o)) as [[[q' w] m] | ].
dependent elimination q'.
* exact (Some (Fin.F1, w, m)).
* exact (Some (Fin.FS (Fin.FS t0), w, m)).
* exact (Some (Fin.FS Fin.F1, None, Nmove)).
Defined. (* because definition *)
Lemma spec1 c : trans M' (Fin.FS Fin.F1, c) = None.
Proof. reflexivity. Qed.
Lemma spec2 c q' : trans M' (q', c) = None -> q' = Fin.FS Fin.F1.
Proof.
cbn. dependent elimination q'.
- cbn. destruct (trans M (Fin.F1, c)) as [[[q' w] m] | ].
dependent elimination q'; cbn; congruence. inversion 1.
- cbn. dependent elimination t; cbn.
+ reflexivity.
+ destruct (trans M) as [[[q' w] m] | ].
dependent elimination q'; cbn; congruence. inversion 1.
Qed.
Definition conv_state (q : Fin.t (S (num_states M))) : Fin.t (S (1 + num_states M)).
Proof.
dependent elimination q. exact Fin.F1. exact (Fin.FS (Fin.FS t)).
Defined. (* because definition *)
Lemma spec3 q c : trans M (q, c) = None -> trans M' (conv_state q, c) = Some (Fin.FS Fin.F1, None, Nmove).
Proof.
intros H. cbn. dependent elimination q; cbn.
- destruct trans as [[[q' w] m] | ].
dependent elimination q'; cbn. all:congruence.
- destruct trans as [[[q' w] m] | ].
dependent elimination q'; cbn. all:congruence.
Qed.
Lemma spec4 q c q' w m : trans M (q, c) = Some (q', w, m) -> trans M' (conv_state q, c) = Some (conv_state q', w, m).
Proof.
cbn. dependent elimination q; cbn; intros H.
- rewrite H.
dependent elimination q'; cbn. all:congruence.
- rewrite H. revert H.
dependent elimination q'; cbn. all:congruence.
Qed.
End fixM.
Lemma reduction :
HaltSBTM ⪯ HaltSBTMu.
Proof.
unshelve eexists.
- intros [M t]. refine (_, t). exists (@M' M). exists (Fin.FS Fin.F1). split. eapply spec1. eapply spec2.
- intros [M t]. cbn. split.
+ intros (q' & t' & H). assert (conv_state M Fin.F1 = Fin.F1) as E by reflexivity. cbn [Nat.add] in E.
rewrite <- E. clear E. revert H.
generalize (@Fin.F1 (num_states M)) at 1 2. intros q H. exists t'.
induction H.
* econstructor. now eapply spec3. cbn. econstructor. reflexivity.
* econstructor. 2:eassumption. now eapply spec4.
+ intros (t' & H).
assert (conv_state M Fin.F1 = Fin.F1) as E by reflexivity. cbn [Nat.add] in E.
rewrite <- E in H. clear E. revert H.
generalize (@Fin.F1 (num_states M)) at 1 3. intros q H.
remember (conv_state M q) as q_.
induction H in q, Heqq_ |- *; subst.
* eexists. econstructor. eapply spec2 in H. dependent elimination q. inversion H. inversion H.
* destruct t as [[ls c] rs]. destruct (trans M (q, c)) as [[[q'_ w_] m_] | ] eqn:Et;
pose proof (ET := Et).
-- eapply spec4 in Et. cbn [curr num_states M' Nat.add] in H. cbn [Nat.add] in Et. rewrite H in Et.
inversion Et; subst; clear Et.
edestruct IHeval as (? & ? & ?). reflexivity. exists x, x0. econstructor. exact ET. eassumption.
-- eapply spec3 in Et. cbn [curr num_states M' Nat.add] in H. cbn [Nat.add] in Et. rewrite H in Et.
inversion Et; subst; clear Et. exists q, (ls, c, rs).
econstructor 1. eassumption.
Unshelve. exact q. exact t.
Qed.