(**************************************************************)
(*   Copyright Dominique Larchey-Wendling *                 *)
(*                                                            *)
(*                             * Affiliation LORIA -- CNRS  *)
(**************************************************************)
(*      This file is distributed under the terms of the       *)
(*         CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT          *)
(**************************************************************)

Require Import List Arith Lia Eqdep_dec.

From Undecidability.Shared.Libs.DLW.Utils
  Require Import utils_tac utils_list utils_nat finite.

From Undecidability.Shared.Libs.DLW.Vec
  Require Import pos vec.

From Undecidability.TRAKHTENBROT
  Require Import notations utils decidable fol_ops fo_sig.

Set Implicit Arguments.

(* * First order terms, syntax and semantics *)

Local Hint Resolve in_vec_list in_vec_pos : core.

Section first_order_terms.

  Variable (syms : Type) (ar_syms : syms -> nat).

  Unset Elimination Schemes. (* we do not want the autogen recursors *)

  (* The Type of first order terms over signature s *)

  Inductive fo_term : Type :=
    | in_var : nat -> fo_term
    | in_fot : forall s, vec fo_term (ar_syms s) -> fo_term.

  Set Elimination Schemes.

  Section fo_term_rect.

    Variable (P : fo_term -> Type)
             (HP0 : forall x, P (in_var x))
             (IHP : forall s v, (forall p, P (vec_pos v p)) -> P (@in_fot s v)).

    Fixpoint fo_term_rect t : P t :=
      match t with
        | in_var x => HP0 x
        | in_fot v => IHP v (fun p => fo_term_rect (vec_pos v p))
      end.

  End fo_term_rect.

  Definition fo_term_rec (P : _ -> Set) := @fo_term_rect P.
  Definition fo_term_ind (P : _ -> Prop) := @fo_term_rect P.

  Fixpoint fo_term_size t : nat :=
    match t with
      | in_var x => 1
      | in_fot v => 1 + lsum (vec_list (vec_map fo_term_size v))
    end.

  Fixpoint fo_term_height t : nat :=
    match t with
      | in_var x => 0
      | in_fot v => 1 + lmax (vec_list (vec_map fo_term_height v))
    end.

  Fact fo_term_size_lt s v p : fo_term_size (vec_pos v p) < fo_term_size (@in_fot s v).
  Proof.
    simpl; apply le_n_S.
    generalize (in_vec_pos (vec_map fo_term_size v) p); rew vec.
    generalize (fo_term_size (vec_pos v p)) (vec_map fo_term_size v).
    clear v p; intros i v; rewrite in_vec_list.
    apply lsum_le.
  Qed.

  Fact fo_term_height_lt s v p : fo_term_height (vec_pos v p) < fo_term_height (@in_fot s v).
  Proof.
    simpl; apply le_n_S.
    generalize (in_vec_pos (vec_map fo_term_height v) p); rew vec.
    generalize (fo_term_height (vec_pos v p)) (vec_map fo_term_height v).
    clear v p; intros i v; rewrite in_vec_list.
    apply lmax_prop.
  Qed.

  Fact in_fot_inv_dep s s' v w : @in_fot s v = @in_fot s' w -> exists E : s = s', eq_rect s (fun s => vec _ (ar_syms s)) v _ E = w.
  Proof. inversion 1; subst; exists eq_refl; auto. Qed.

  Section eq_fo_term_dec.

    Variable eq_syms_dec : discrete syms.

    Fact in_fot_inv s v w : @in_fot s v = @in_fot s w -> v = w.
    Proof.
      intros H; destruct in_fot_inv_dep with (1 := H) as (E & H1).
      rewrite (UIP_dec eq_syms_dec E eq_refl) in H1; auto.
    Qed.

    Theorem eq_fo_term_dec : discrete fo_term.
    Proof.
      intros t; induction t as [ i | s v IHv ]; intros [ j | s' w ].
      + destruct (eq_nat_dec i j) as [ -> | H ]; [ left | right ]; auto.
        contradict H; inversion H; auto.
      + right; discriminate.
      + right; discriminate.
      + destruct (eq_syms_dec s s') as [ <- | H ].
        * destruct list_dec with (P := fun p => vec_pos v p <> vec_pos w p)
                                 (Q := fun p => vec_pos v p = vec_pos w p)
                                 (l := pos_list (ar_syms s))
            as [ (p & _ & H) | H ].
          - intros p; generalize (IHv p (vec_pos w p)); unfold decidable; tauto.
          - right; contradict H; f_equal; revert H; apply in_fot_inv.
          - left; f_equal; apply vec_pos_ext; intros p.
            apply H, pos_list_prop.
        * right; contradict H; inversion H; auto.
    Qed.

  End eq_fo_term_dec.

  Fixpoint fo_term_vars t :=
    match t with
      | in_var x => x::nil
      | @in_fot s v => concat (vec_list (vec_map fo_term_vars v))
    end.

  Fact fo_term_vars_fix_0 x : fo_term_vars (in_var x) = x :: nil.
  Proof. trivial. Qed.

  Fact fo_term_vars_fix_1 s v : fo_term_vars (@in_fot s v) = flat_map fo_term_vars (vec_list v).
  Proof. simpl; rewrite vec_list_vec_map, <- flat_map_concat_map; auto. Qed.

  Fixpoint fo_term_syms t :=
    match t with
      | in_var x => nil
      | @in_fot s v => s::concat (vec_list (vec_map fo_term_syms v))
    end.

  Fact fo_term_syms_fix_0 x : fo_term_syms (in_var x) = nil.
  Proof. trivial. Qed.

  Fact fo_term_syms_fix_1 s v : fo_term_syms (@in_fot s v) = s::flat_map fo_term_syms (vec_list v).
  Proof. simpl; rewrite vec_list_vec_map, <- flat_map_concat_map; auto. Qed.

  Fixpoint fo_term_subst σ t :=
    match t with
      | in_var x => σ x
      | in_fot v => in_fot (vec_map (fo_term_subst σ) v)
    end.

  Notation "t ⟬ σ ⟭" := (fo_term_subst σ t).

  Fact fo_term_subst_fix_0 σ x : (in_var x)⟬σ = σ x.
  Proof. trivial. Qed.

  Fact fo_term_subst_fix_1 σ s v :
          (@in_fot s v)⟬σ = in_fot (vec_map (fo_term_subst σ) v).
  Proof. trivial. Qed.

  Fact fo_term_subst_ext f g t :
     (forall x, In x (fo_term_vars t) -> f x = g x) -> tf = tg.
  Proof.
    induction t as [ | s v IHv ]; intros Hfg; simpl.
    + apply Hfg; simpl; auto.
    + f_equal; apply vec_map_ext.
      intros x Hx.
      apply in_vec_list, vec_list_inv in Hx.
      destruct Hx as (p & ->).
      apply IHv.
      intros y Hy; apply Hfg.
      rewrite fo_term_vars_fix_1, in_flat_map.
      exists (vec_pos v p).
      split; auto; apply in_vec_list; auto.
  Qed.

  Section fo_term_subst_comp.

    Variables (f g : nat -> fo_term).

    Fact fo_term_subst_comp t : tf g = tfun x => (f x)⟬g .
    Proof.
      induction t; simpl; auto.
      rewrite vec_map_map; f_equal.
      apply vec_pos_ext; intros p; rew vec.
    Qed.

  End fo_term_subst_comp.

End first_order_terms.

Notation fol_term := (fun Σ => fo_term (ar_syms Σ)).

Arguments in_var { _ _ }.
Arguments in_fot { _ _ }.

Create HintDb fo_term_db.
Tactic Notation "rew" "fot" := autorewrite with fo_term_db.

Hint Rewrite fo_term_vars_fix_0 fo_term_vars_fix_1
             fo_term_syms_fix_0 fo_term_syms_fix_1
             fo_term_subst_fix_0 fo_term_subst_fix_1
             fo_term_subst_comp
           : fo_term_db.

Notation "t ⟬ σ ⟭" := (fo_term_subst σ t).

Section fo_term_extra.

  Variable (Σ : fo_signature).

  Notation 𝕋 := (fol_term Σ).

  Implicit Type t : 𝕋.

  Section map.

    Variable (f : nat -> nat).

    Fixpoint fo_term_map t :=
      match t with
        | in_var x => in_var (f x)
        | in_fot s v => in_fot s (vec_map fo_term_map v)
      end.

    Fact fo_term_map_fix_0 x : fo_term_map (in_var x) = in_var (f x).
    Proof. trivial. Qed.

    Fact fo_term_map_fix_1 s v :
         fo_term_map (in_fot s v) = in_fot s (vec_map fo_term_map v).
    Proof. trivial. Qed.

  End map.

  Opaque fo_term_map.

  Hint Rewrite fo_term_map_fix_0 fo_term_map_fix_1 : fo_term_db.

  Fact fo_term_subst_map f t : tfun x => in_var (f x) = fo_term_map f t.
  Proof.
    induction t; rew fot; f_equal.
    apply vec_pos_ext; intro; rew vec.
  Qed.

  Fact fo_term_map_ext f g t :
           (forall x, In x (fo_term_vars t) -> f x = g x)
        -> fo_term_map f t = fo_term_map g t.
  Proof.
    intros Hfg.
    do 2 rewrite <- fo_term_subst_map.
    apply fo_term_subst_ext.
    intros; f_equal; auto.
  Qed.

  Fact fo_term_vars_subst f t :
         fo_term_vars (tf) = flat_map (fun n => fo_term_vars (f n)) (fo_term_vars t).
  Proof.
    induction t as [ n | s v IHv ]; rew fot; auto.
    + simpl; rewrite <- app_nil_end; auto.
    + rewrite vec_list_vec_map.
      rewrite flat_map_flat_map.
      rewrite flat_map_concat_map, map_map, <- flat_map_concat_map.
      do 2 rewrite flat_map_concat_map; f_equal.
      apply map_ext_in; intros x Hx.
      apply vec_list_inv in Hx.
      destruct Hx as (p & ->).
      rewrite IHv; auto.
  Qed.

  Fact fo_term_vars_map f t : fo_term_vars (fo_term_map f t) = map f (fo_term_vars t).
  Proof.
    rewrite <- fo_term_subst_map, fo_term_vars_subst.
    generalize (fo_term_vars t); clear t.
    induction l; simpl; f_equal; auto.
  Qed.

  Fact fo_term_syms_map f t : fo_term_syms (fo_term_map f t) = fo_term_syms t.
  Proof.
    induction t as [ n | s v IHv ]; rew fot; auto; f_equal.
    do 2 rewrite flat_map_concat_map; f_equal.
    rewrite vec_list_vec_map, map_map.
    apply map_ext_in.
    intros x Hx; apply vec_list_inv in Hx.
    destruct Hx as (p & ->); apply IHv.
  Qed.

  (* The identity is going to be complicated only permutation will do
      the syms in the substitution are those in the original term + all
      those occuring in the substitution on the variables in t 

      We show the weaker  *)


  Fact fo_term_syms_subst P f t :
        (forall n, In n (fo_term_vars t) -> Forall P (fo_term_syms (f n)))
     -> Forall P (fo_term_syms t) -> Forall P (fo_term_syms (tf)).
  Proof.
    induction t as [ n | s v IH ]; intros H1 H2; rew fot.
    + apply H1; simpl; auto.
    + constructor.
      * rewrite Forall_forall in H2; apply H2; rew fot; left; auto.
      * rewrite Forall_forall; intros x; rewrite in_flat_map.
        intros (s' & H3 & H4).
        rewrite vec_list_vec_map, in_map_iff in H3.
        destruct H3 as (t & <- & H3).
        apply vec_list_inv in H3.
        destruct H3 as (p & ->).
        revert x H4; apply Forall_forall, IH; auto.
        - intros; apply H1; rew fot; apply in_flat_map.
          exists (vec_pos v p); split; auto.
          apply in_vec_list, in_vec_pos.
        - revert H2; do 2 rewrite Forall_forall.
          intros H2 x Hx; apply H2; rew fot.
          right; apply in_flat_map.
          exists (vec_pos v p); split; auto.
          apply in_vec_list, in_vec_pos.
  Qed.

End fo_term_extra.

Arguments fo_term_vars {_ _}.
Arguments fo_term_syms {_ _}.

Opaque fo_term_map.

Hint Rewrite fo_term_map_fix_0 fo_term_map_fix_1
           : fo_term_db.

Definition fo_term_subst_lift Σ (σ : nat -> fol_term Σ) n :=
  match n with
    | 0 => in_var 0
    | S n => fo_term_map S (fo_term_subst σ (in_var n))
  end.

Arguments fo_term_subst_lift {Σ} σ n /.

Notation "⇡ σ" := (fo_term_subst_lift σ).

Section semantics.

  Variable (Σ : fo_signature)
           (X : Type) (M : fo_model Σ X).

  Notation 𝕋 := (fol_term Σ).

  Implicit Type φ : nat -> X.

  Fixpoint fo_term_sem φ (t : 𝕋) :=
    match t with
      | in_var x => φ x
      | in_fot s v => fom_syms M s (vec_map (fo_term_sem φ) v)
    end.

  Notation "⟦ t ⟧" := (fun φ => @fo_term_sem φ t).

  Fact fo_term_sem_fix_0 φ n : in_var n φ = φ n.
  Proof. trivial. Qed.

  Fact fo_term_sem_fix_1 φ s v : in_fot s v φ = fom_syms M s (vec_map (fun t => t φ) v).
  Proof. trivial. Qed.

  Opaque fo_term_sem.

  Hint Rewrite fo_term_sem_fix_0 fo_term_sem_fix_1 : fo_term_db.

  Fact fo_term_sem_ext t φ ψ :
        (forall n, In n (fo_term_vars t) -> φ n = ψ n) -> t φ = t ψ.
  Proof.
    induction t as [ n | s v IHv ] in φ, ψ |- *; intros H; rew fot.
    + apply H; simpl; auto.
    + f_equal; apply vec_map_ext.
      intros x Hx.
      apply in_vec_list, vec_list_inv in Hx.
      destruct Hx as (p & ->).
      apply IHv; auto.
      intros n Hn; apply H; rew fot.
      apply in_flat_map; exists (vec_pos v p); split; auto.
      apply in_vec_list; auto.
  Qed.

  Fact fo_term_sem_subst φ σ t : tσ φ = t (fun n => ⟦σ n φ).
  Proof.
    induction t; rew fot; f_equal; auto.
    apply vec_pos_ext; intros; rew vec.
  Qed.

End semantics.

Opaque fo_term_sem.

Hint Rewrite fo_term_sem_fix_0 fo_term_sem_fix_1 fo_term_sem_subst : fo_term_db.