(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Bool Lia Eqdep_dec.
From Undecidability.Shared.Libs.DLW.Utils
Require Import utils_tac utils_list utils_nat finite.
From Undecidability.Shared.Libs.DLW.Vec
Require Import pos vec.
From Undecidability.TRAKHTENBROT
Require Import notations utils fol_ops fo_sig fo_terms fo_logic fo_sat.
Set Implicit Arguments.
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Bool Lia Eqdep_dec.
From Undecidability.Shared.Libs.DLW.Utils
Require Import utils_tac utils_list utils_nat finite.
From Undecidability.Shared.Libs.DLW.Vec
Require Import pos vec.
From Undecidability.TRAKHTENBROT
Require Import notations utils fol_ops fo_sig fo_terms fo_logic fo_sat.
Set Implicit Arguments.
Local Notation ø := vec_nil.
Section remove_constants.
Variable (Σ : fo_signature) (HΣ : forall s, ar_syms Σ s <= 1).
Definition Σno_constants : fo_signature.
Proof.
exists (syms Σ) (rels Σ).
+ exact (fun _ => 1).
+ apply ar_rels.
Defined.
Notation Σ' := Σno_constants.
Implicit Type (t : fo_term (ar_syms Σ))
(A : fol_form Σ).
Let choice : forall a, { a = 0 } + { a = 1 } + { 1 < a }.
Proof. intros [ | [ | a ] ]; auto; right; lia. Qed.
Let Fixpoint fot_rem_cst (n : nat) t { struct t } : fo_term (ar_syms Σ').
Proof.
refine (match t with
| in_var i => in_var i
| in_fot s v =>
match choice (ar_syms _ s) with
| inleft (left _) => @in_fot _ (ar_syms Σ') s (£n##ø)
| inleft (right E) => @in_fot _ (ar_syms Σ') s (fot_rem_cst n (vec_pos (cast v E) pos0)##ø)
| inright H => _
end
end).
exfalso; abstract (generalize (HΣ s); lia).
Defined.
Fixpoint Σrem_constants (n : nat) A { struct A } :=
match A with
| ⊥ => ⊥
| fol_atom r v => @fol_atom Σ' r (vec_map (fot_rem_cst n) v)
| fol_bin b A B => fol_bin b (Σrem_constants n A) (Σrem_constants n B)
| fol_quant q A => fol_quant q (Σrem_constants (S n) A)
end.
Variable (X : Type).
Section soundness.
Variable (M : fo_model Σ X).
Let M' : fo_model Σ' X.
Proof.
split.
+ intros s; simpl in *.
destruct (choice (ar_syms _ s)) as [ [ H | H ] | H ].
* exact (fun _ => fom_syms M s (cast ø (eq_sym H))).
* exact (fun v => fom_syms M s (cast v (eq_sym H))).
* abstract (intros; exfalso; generalize (HΣ s); lia).
+ apply (fom_rels M).
Defined.
Let fot_rem_cst_sound n t φ :
fo_term_sem M φ t = fo_term_sem M' φ (fot_rem_cst n t).
Proof.
induction t as [ i | s v IHv ].
+ simpl; auto.
+ simpl.
case_eq (choice (ar_syms Σ s)); [ intros [ E | E ] | intros E ]; intros HE;
simpl; try rewrite HE; clear HE.
* f_equal.
clear n IHv; revert E v.
intros -> v; vec nil v; auto.
* f_equal; apply vec_pos_ext; intros p; rew vec.
specialize (IHv p); rewrite IHv; clear IHv.
revert E p v; intros -> p v.
analyse pos p; rew vec.
* exfalso; clear v IHv.
generalize (HΣ s); lia.
Qed.
Local Fact Σrem_constants_sound n A φ : fol_sem M φ A <-> fol_sem M' φ (Σrem_constants n A).
Proof.
revert n φ; induction A as [ | r v | b A HA B HB | q A HA ]; intros n φ.
+ simpl; tauto.
+ simpl.
rewrite vec_map_map.
apply fol_equiv_ext; f_equal.
apply vec_pos_ext; intros p; rew vec.
+ simpl; apply fol_bin_sem_ext; auto.
+ simpl; apply fol_quant_sem_ext; intro; auto.
Qed.
Hypothesis (Xfin : finite_t X)
(Mdec : fo_model_dec M)
(φ : nat -> X)
(A : fol_form Σ)
(HA : fol_sem M φ A).
Local Lemma Σrem_constants_soundness : fo_form_fin_dec_SAT_in (Σrem_constants 0 A) X.
Proof.
exists M', Xfin, Mdec, φ.
apply Σrem_constants_sound; auto.
Qed.
End soundness.
Section completeness.
Variable (M' : fo_model Σ' X)
(φ : nat -> X).
Let M : fo_model Σ X.
Proof.
split.
+ simpl; intros s.
destruct (choice (ar_syms _ s)) as [ [ H | H ] | H ].
* exact (fun _ => fom_syms M' s (φ 0##ø)).
* exact (fun v => fom_syms M' s (cast v H)).
* abstract (intros; exfalso; generalize (HΣ s); lia).
+ apply (fom_rels M').
Defined.
Let fot_rem_cst_complete n t ψ :
ψ n = φ 0
-> fo_term_sem M ψ t = fo_term_sem M' ψ (fot_rem_cst n t).
Proof.
intros H0; induction t as [ i | s v IHv ].
+ simpl; auto.
+ simpl.
destruct (choice (ar_syms Σ s)) as [ [ E | E ] | E ].
* simpl; now do 2 f_equal.
* simpl fo_term_sem; f_equal.
revert E v IHv; intros -> v IHv.
apply vec_pos_ext; intros p; rew vec.
analyse pos p; simpl; rew vec.
* exfalso; clear v IHv.
generalize (HΣ s); lia.
Qed.
Local Fact Σrem_constants_complete n A ψ :
ψ n = φ 0
-> fol_sem M ψ A <-> fol_sem M' ψ (Σrem_constants n A).
Proof.
revert n ψ; induction A as [ | r v | b A HA B HB | q A HA ]; intros n ψ H.
+ simpl; tauto.
+ simpl; apply fol_equiv_ext; f_equal; rewrite vec_map_map.
apply vec_pos_ext; intros p; rewrite !vec_pos_map; auto.
+ simpl; apply fol_bin_sem_ext; auto.
+ simpl; apply fol_quant_sem_ext; intro; apply HA; simpl; auto.
Qed.
Hypothesis (Xfin : finite_t X)
(M'dec : fo_model_dec M')
(A : fol_form Σ)
(HA : fol_sem M' φ (Σrem_constants 0 A)).
Local Lemma Σrem_constants_completeness : fo_form_fin_dec_SAT_in A X.
Proof.
exists M, Xfin, M'dec, φ.
revert HA; apply Σrem_constants_complete; auto.
Qed.
End completeness.
Theorem Σrem_constants_correct A :
fo_form_fin_dec_SAT_in A X
<-> fo_form_fin_dec_SAT_in (Σrem_constants 0 A) X.
Proof.
split.
+ intros (M & H1 & H2 & phi & H3).
apply Σrem_constants_soundness with M phi; auto.
+ intros (M & H1 & H2 & phi & H3).
apply Σrem_constants_completeness with M phi; auto.
Qed.
End remove_constants.