Implicit Type b : logic.
Definition cprv := @prv class full.
Instance iUnit P : interp unit (fun _ => tt) :=
{| i_f _ _ := tt ; i_e := tt ; i_P _ _ := True ; i_Q := P |}.
Hint Constructors prv.
Lemma MND_CND A (phi : form frag) :
A ⊢M phi -> map lift A ⊢C lift phi.
Proof.
unfold prv_min. revert A phi. remember frag as b. intros.
induction H; cbn in *; subst; try congruence.
- eapply Ctx, in_map_iff; eauto.
- eapply ImpI; eauto.
- eapply ImpE; eauto.
- eapply AllI with (y0 := y).
+ rewrite consts_lifts. intros [] % in_app_iff; eapply H; eauto.
eapply in_app_iff. right. unfold consts_l in *.
eapply in_flat_map in H1 as (? & (? & <- & ?) % in_map_iff & ?).
rewrite consts_lifts in H2. eapply in_flat_map. eauto.
+ rewrite subst_lift in IHprv. eauto.
- rewrite subst_lift. eapply AllE; eauto.
Qed.
Lemma cnd_XM:
(forall (phi : form full), cprv [] phi -> valid phi) ->
forall P, ~~ P -> P.
Proof.
intros H P. specialize (H ( (¬¬Q) --> Q)).
refine (H _ unit _ (iUnit P) (fun _ => tt)).
eapply ImpI. eapply DN. eauto.
Qed.
Definition dnQ {b} (phi : form b) : form b := (phi --> Q) --> Q.
Fixpoint trans {b} (phi : form b) : form b :=
match phi with
| Impl phi1 phi2 => Impl (trans phi1) (trans phi2)
| All x phi => All x (trans phi)
| Pr s t => dnQ (Pr s t)
| Q => Q
| Fal => Q
end.
Lemma consts_trans b phi :
consts (trans phi) = consts phi.
Proof.
induction phi; cbn; try congruence; destruct b; cbn; try now rewrite !app_nil_r.
Qed.
Lemma trans_subst b x t (phi : form b) :
trans (subst x t phi) = subst x t (trans phi).
Proof.
induction phi; cbn; try congruence; decs.
Qed.
Lemma appCtx b psi1 psi2 A :
psi1 --> psi2 el A -> A ⊢I psi1 -> A ⊢I psi2.
Proof.
intros. eapply (ImpE (phi1 := psi1) (phi2 := psi2)); eauto using Ctx.
Qed.
Lemma app1 b psi1 psi2 A :
(psi1 --> psi2 :: A) ⊢I psi1 -> (psi1 --> psi2 :: A) ⊢I psi2.
Proof.
intros. eapply appCtx; eauto.
Qed.
Lemma app2 b psi1 psi2 A phi :
(phi :: psi1 --> psi2 :: A) ⊢I psi1 -> (phi :: psi1 --> psi2 :: A) ⊢I psi2.
Proof.
intros. eapply appCtx; eauto.
Qed.
Lemma app3 b psi1 psi2 A phi phi2 :
(phi :: phi2 :: psi1 --> psi2 :: A) ⊢I psi1 -> (phi :: phi2 :: psi1 --> psi2 :: A) ⊢I psi2.
Proof.
intros. eapply appCtx; eauto.
Qed.
Lemma trans_trans b (phi : form b) A :
A ⊢I ((dnQ (trans phi)) --> trans phi).
Proof.
revert A. induction phi using form_ind_subst; cbn; intros.
- eapply ImpI. eapply ImpI. eapply app2. eapply ImpI.
eapply app1. eapply Ctx. eauto.
- cbn. eapply ImpI. eapply app1 . eapply ImpI. eapply Ctx. eauto.
- eapply ImpI. eapply app1. eapply ImpI. eapply Ctx. eauto.
- eapply ImpI. eapply ImpI. eapply ImpE. eapply IHphi2.
eapply ImpI. eapply app3. eapply ImpI. eapply app2. eapply app1. eapply Ctx. eauto.
- eapply ImpI. destruct (make_fresh (n :: consts phi ++ consts_l A)) as [y Hy].
eapply AllI with (y0 := y).
+ cbn. rewrite consts_trans. rewrite !app_nil_r.
intros [ | ] % in_app_iff; eauto.
+ rewrite <- trans_subst.
assert ((dnQ (∀ n; trans phi) :: A) ⊢I ((dnQ (trans (subst n (P y) phi))) --> trans (subst n (P y) phi))) by eapply H.
eapply (ImpE H0). eapply ImpI. eapply app2. eapply ImpI.
eapply app2. rewrite trans_subst. eapply AllE.
* reflexivity.
* eapply Ctx. eauto.
Qed.
Lemma Double' b A (phi : form b) :
A ⊢C phi -> map trans A ⊢I trans phi.
Proof.
remember class as s; induction 1; cbn in *; subst; try congruence.
- eapply Ctx. now eapply in_map.
- eapply ImpI. eauto.
- eapply ImpE; eauto.
- eapply AllI with (y0 := y).
+ rewrite consts_trans. unfold consts_l. rewrite flat_map_concat_map.
rewrite map_map. erewrite map_ext with (g := consts).
now rewrite <- flat_map_concat_map.
eapply consts_trans.
+ rewrite <- trans_subst. eauto.
- rewrite trans_subst. eapply AllE; eauto.
- specialize (IHprv eq_refl). eapply ImpE. eapply trans_trans. eauto.
Qed.
Lemma Double b (phi : form b) :
[] ⊢C phi -> [] ⊢I (trans phi).
Proof.
eapply Double'.
Qed.
Section BPCP_CND.
Variable R : BSRS.
Context {b : logic}.
Lemma BPCP_to_CND :
BPCP R -> [] ⊢C (F R).
Proof.
intros H. now apply BPCP_prv'.
Qed.
Lemma impl_trans A phi :
trans (A ==> phi) = (map trans A) ==> trans phi.
Proof.
induction A; cbn; congruence.
Qed.
Lemma CND_BPCP :
[] ⊢C (F R) -> BPCP R.
Proof.
intros H % Double % soundness.
specialize (H _ _ (IB R) (fun _ => nil)).
unfold F, F1, F2 in H. rewrite !impl_trans, !map_map, !impl_sat in H. cbn in H.
eapply H.
- intros ? [(x,y) [<- ?] ] % in_map_iff ?. cbn in *. eapply H1.
left. now rewrite !IB_enc.
- intros ? [(x,y) [<- ?] ] % in_map_iff ? ? ? ?. cbn in *. eapply H1. intros.
eapply H2. rewrite !IB_prep. cbn. econstructor 2; trivial.
- intros. eapply H0. intros []; eauto.
Qed.
Lemma BPCP_CND :
BPCP R <-> [] ⊢C (F R).
Proof.
split. eapply BPCP_to_CND. intros ? % CND_BPCP. eauto.
Qed.
End BPCP_CND.
Corollary cprv_red :
BPCP ⪯ cprv nil.
Proof.
exists (fun R => F R). intros R. apply (BPCP_CND R).
Qed.
Corollary cprv_undec :
UA -> ~ decidable (cprv nil).
Proof.
intros H. now apply (not_decidable cprv_red).
Qed.
Corollary cprv_unenum :
UA -> ~ enumerable (compl (@cprv nil)).
Proof.
intros H. apply (not_coenumerable cprv_red); trivial.
Qed.