From Undecidability.FOL Require Import Syntax.Core.
From Undecidability.FOL.Arithmetics Require Export Signature FA Robinson PA.
Require Import Undecidability.FOL.Deduction.FullND.
Require Import Undecidability.FOL.Semantics.Tarski.FullCore.
Import Vector.VectorNotations.
Require Import List.
Notation extensional M :=
(forall x y, @i_atom _ _ _ M Eq ([x ; y]) <-> x = y).
Definition entailment_FA phi :=
valid_ctx FAeq phi.
Definition deduction_FA phi :=
FAeq ⊢I phi.
Definition entailment_Q phi :=
valid_ctx Qeq phi.
Definition deduction_Q phi :=
Qeq ⊢I phi.
Definition entailment_PA phi :=
forall D (I : interp D) rho, (forall psi rho, PAeq psi -> rho ⊨ psi) -> rho ⊨ phi.
Definition ext_entailment_PA phi :=
forall D (I : interp D) rho, extensional I -> (forall psi rho, PA psi -> rho ⊨ psi) -> rho ⊨ phi.
Definition deduction_PA phi :=
PAeq ⊢TI phi.
From Undecidability.FOL.Arithmetics Require Export Signature FA Robinson PA.
Require Import Undecidability.FOL.Deduction.FullND.
Require Import Undecidability.FOL.Semantics.Tarski.FullCore.
Import Vector.VectorNotations.
Require Import List.
Notation extensional M :=
(forall x y, @i_atom _ _ _ M Eq ([x ; y]) <-> x = y).
Definition entailment_FA phi :=
valid_ctx FAeq phi.
Definition deduction_FA phi :=
FAeq ⊢I phi.
Definition entailment_Q phi :=
valid_ctx Qeq phi.
Definition deduction_Q phi :=
Qeq ⊢I phi.
Definition entailment_PA phi :=
forall D (I : interp D) rho, (forall psi rho, PAeq psi -> rho ⊨ psi) -> rho ⊨ phi.
Definition ext_entailment_PA phi :=
forall D (I : interp D) rho, extensional I -> (forall psi rho, PA psi -> rho ⊨ psi) -> rho ⊨ phi.
Definition deduction_PA phi :=
PAeq ⊢TI phi.