Require Export Undecidability.FOL.Syntax.Core.
Require Export Undecidability.FOL.Semantics.Tarski.FullFacts.
Require Export Undecidability.FOL.Deduction.FullNDFacts.
Require Export Undecidability.FOL.Sets.Signatures.
Import Vector.VectorNotations.
Require Import List.
#[global]
Existing Instance falsity_on.
Import BinSig.
Export BinSig.
Arguments Vector.nil {_}, _.
Arguments Vector.cons {_} _ {_} _, _ _ _ _.
Declare Scope syn'.
Open Scope syn'.
Notation "x ∈' y" := (atom sig_empty sig_binary tt ([x; y])) (at level 35) : syn'.
Definition eq' (x y : term) :=
∀ x`[↑] ∈' $0 ↔ y`[↑] ∈' $0.
Notation "x ≡' y" := (eq' x y) (at level 35) : syn'.
Fixpoint shift `{funcs_signature} `{preds_signature} n (t : term) :=
match n with
| O => t
| S n => subst_term ↑ (shift n t)
end.
Definition is_eset (t : term) :=
∀ ¬ ($0 ∈' t`[↑]).
Definition is_pair (x y t : term) :=
∀ $0 ∈' t`[↑] ↔ $0 ≡' x`[↑] ∨ $0 ≡' y`[↑].
Definition is_union (x t : term) :=
∀ $0 ∈' t`[↑] ↔ ∃ $0 ∈' shift 2 x ∧ $1 ∈' $0.
Definition sub' (x y : term) :=
∀ $0 ∈' x`[↑] → $0 ∈' y`[↑].
Definition is_power (x t : term) :=
∀ $0 ∈' t`[↑] ↔ sub' $0 x`[↑].
Definition is_sigma (x t : term) :=
∀ $0 ∈' t`[↑] ↔ $0 ∈' x`[↑] ∨ $0 ≡' x`[↑].
Definition is_inductive (t : term) :=
(∃ is_eset $0 ∧ $0 ∈' t`[↑]) ∧ ∀ $0 ∈' t`[↑] → (∃ is_sigma $1 $0 ∧ $0 ∈' shift 2 t).
Definition is_om (t : term) :=
is_inductive t ∧ ∀ is_inductive $0 → sub' t`[↑] $0.
Definition ax_ext' :=
∀ ∀ sub' $1 $0 → sub' $0 $1 → $1 ≡' $0.
Definition ax_eq_elem' :=
∀ ∀ ∀ ∀ $3 ≡' $1 → $2 ≡' $0 → $3 ∈' $2 → $1 ∈' $0.
Definition ax_eset' :=
∃ is_eset $0.
Definition ax_pair' :=
∀ ∀ ∃ is_pair $2 $1 $0.
Definition ax_union' :=
∀ ∃ is_union $1 $0.
Definition ax_power' :=
∀ ∃ is_power $1 $0.
Definition ax_om' :=
∃ is_om $0.
Definition binZF :=
ax_ext' :: ax_eq_elem' :: ax_eset' :: ax_pair' :: ax_union' :: ax_power' :: ax_om' :: nil.
Definition entailment_binZF phi :=
forall D (M : @interp sig_empty _ D) (rho : nat -> D), (forall psi, In psi binZF -> rho ⊨ psi) -> rho ⊨ phi.
Definition deduction_binZF phi :=
binZF ⊢I phi.