From Undecidability.Synthetic
Require Import Definitions Undecidability.
From Undecidability.FOL
Require Import Sets.FST
Semantics.Tarski.FullFacts
Semantics.Tarski.FullSoundness
Deduction.FullNDFacts
Sets.Models.FST_model.
From Undecidability.FOL.Undecidability.Reductions
Require Import PCPb_to_FST PCPb_to_FSTD ZF_to_FST.
From Undecidability.PCP
Require Import PCP PCP_undec Reductions.PCPb_iff_dPCPb.
Theorem undecidable_entailment_FSTeq :
undecidable entailment_FSTeq.
Proof.
apply (undecidability_from_reducibility PCPb_undec).
exists solvable'. intros B. split.
- intros HP % (PCP_FSTD (p:=intu)).
apply soundness in HP. intros I M rho H. apply HP, H.
- apply PCP_FST.
Qed.
Theorem undecidable_deduction_FST :
undecidable deduction_FST.
Proof.
apply (undecidability_from_reducibility PCPb_undec).
exists solvable'. intros B. split.
- intros HP % (PCP_FSTD (p:=intu)). apply HP.
- intros HP % soundness. apply PCP_FST.
intros I M rho H. apply HP. apply H.
Qed.
Theorem undecidable_entailment_FST :
undecidable entailment_FST.
Proof.
apply (undecidability_from_reducibility PCPb_undec).
exists solvable. intros B. apply PCPb_to_FST.PCP_FST.
apply FST_model.
Qed.
Theorem undecidable_entailment_FSTI :
undecidable entailment_FSTI.
Proof.
apply (undecidability_from_reducibility PCPb_undec).
exists solvable. intros B. rewrite PCPb_iff_dPCPb. split; intros H.
- destruct H as [s H]. intros M HM rho H1 H2. eapply PCP_FST1; eauto.
intros sigma psi Hp. apply H2. now constructor.
- destruct FSTI_model as (D & I & H1 & H2 & H3).
specialize (H D I (fun _ => @i_func _ _ _ _ eset Vector.nil) H1 H3).
apply PCP_FST2 in H as [s Hs]; trivial. now exists s.
intros sigma psi Hp. apply H3. now constructor.
Qed.
Theorem undecidable_deduction_FSTI :
undecidable deduction_FSTI.
Proof.
apply (undecidability_from_reducibility PCPb_undec).
exists solvable. intros B. split; intros H.
- exists FSTeq. split; try apply FSTeq_base. now apply PCPb_to_FSTD.PCP_FSTD.
- destruct FSTI_model as (D & I & H1 & H2 & H3).
rewrite PCPb_iff_dPCPb. unshelve eapply PCP_FST2; eauto.
+ exact (fun _ => @i_func _ _ _ _ eset Vector.nil).
+ intros sigma psi Hp. apply H3. now constructor.
+ apply (tsoundness H). intros psi [theta [<-|[<-|[<-|[<-|Hp]]]]|theta].
1-4: cbn; setoid_rewrite H1; congruence.
* apply H3. now constructor.
* apply H3. constructor 2.
Qed.
Require Import Definitions Undecidability.
From Undecidability.FOL
Require Import Sets.FST
Semantics.Tarski.FullFacts
Semantics.Tarski.FullSoundness
Deduction.FullNDFacts
Sets.Models.FST_model.
From Undecidability.FOL.Undecidability.Reductions
Require Import PCPb_to_FST PCPb_to_FSTD ZF_to_FST.
From Undecidability.PCP
Require Import PCP PCP_undec Reductions.PCPb_iff_dPCPb.
Theorem undecidable_entailment_FSTeq :
undecidable entailment_FSTeq.
Proof.
apply (undecidability_from_reducibility PCPb_undec).
exists solvable'. intros B. split.
- intros HP % (PCP_FSTD (p:=intu)).
apply soundness in HP. intros I M rho H. apply HP, H.
- apply PCP_FST.
Qed.
Theorem undecidable_deduction_FST :
undecidable deduction_FST.
Proof.
apply (undecidability_from_reducibility PCPb_undec).
exists solvable'. intros B. split.
- intros HP % (PCP_FSTD (p:=intu)). apply HP.
- intros HP % soundness. apply PCP_FST.
intros I M rho H. apply HP. apply H.
Qed.
Theorem undecidable_entailment_FST :
undecidable entailment_FST.
Proof.
apply (undecidability_from_reducibility PCPb_undec).
exists solvable. intros B. apply PCPb_to_FST.PCP_FST.
apply FST_model.
Qed.
Theorem undecidable_entailment_FSTI :
undecidable entailment_FSTI.
Proof.
apply (undecidability_from_reducibility PCPb_undec).
exists solvable. intros B. rewrite PCPb_iff_dPCPb. split; intros H.
- destruct H as [s H]. intros M HM rho H1 H2. eapply PCP_FST1; eauto.
intros sigma psi Hp. apply H2. now constructor.
- destruct FSTI_model as (D & I & H1 & H2 & H3).
specialize (H D I (fun _ => @i_func _ _ _ _ eset Vector.nil) H1 H3).
apply PCP_FST2 in H as [s Hs]; trivial. now exists s.
intros sigma psi Hp. apply H3. now constructor.
Qed.
Theorem undecidable_deduction_FSTI :
undecidable deduction_FSTI.
Proof.
apply (undecidability_from_reducibility PCPb_undec).
exists solvable. intros B. split; intros H.
- exists FSTeq. split; try apply FSTeq_base. now apply PCPb_to_FSTD.PCP_FSTD.
- destruct FSTI_model as (D & I & H1 & H2 & H3).
rewrite PCPb_iff_dPCPb. unshelve eapply PCP_FST2; eauto.
+ exact (fun _ => @i_func _ _ _ _ eset Vector.nil).
+ intros sigma psi Hp. apply H3. now constructor.
+ apply (tsoundness H). intros psi [theta [<-|[<-|[<-|[<-|Hp]]]]|theta].
1-4: cbn; setoid_rewrite H1; congruence.
* apply H3. now constructor.
* apply H3. constructor 2.
Qed.