From Undecidability.FOL
Require Import Syntax.Facts Semantics.Tarski.FullFacts Deduction.FullNDFacts.
From Undecidability.FOL.Sets
Require Import Models.Aczel Models.ZF_model ZF minZF FST.
From Undecidability.FOL.Undecidability.Reductions
Require Import PCPb_to_ZF PCPb_to_ZFeq PCPb_to_minZF PCPb_to_minZFeq PCPb_to_ZFD.
Require Import Lia.
From Undecidability.PCP Require Import PCP.
From Undecidability Require Import Shared.ListAutomation.
Import ListAutomationNotations.
Local Set Implicit Arguments.
Local Unset Strict Implicit.
Local Hint Constructors prv : core.
#[local] Notation term' := (term sig_empty).
#[local] Notation form' := (form sig_empty _ _ falsity_on).
Definition embed_t' (t : term') : term :=
match t with
| $x => $x
| func f ts => False_rect term f
end.
Fixpoint embed' {ff'} (phi : form sig_empty ZF_pred_sig _ ff') : form ff' :=
match phi with
| atom P ts => atom (if P then elem else equal) (Vector.map embed_t' ts)
| bin b phi psi => bin b (embed' phi) (embed' psi)
| quant q phi => quant q (embed' phi)
| ⊥ => ⊥
end.
Lemma embed_subst_t' (sigma : nat -> term') (t : term') :
embed_t' t`[sigma] = (embed_t' t)`[sigma >> embed_t'].
Proof.
induction t; cbn; trivial. destruct F.
Qed.
Lemma embed_subst' (sigma : nat -> term') phi :
embed' phi[sigma] = (embed' phi)[sigma >> embed_t'].
Proof.
induction phi in sigma |- *; cbn; trivial.
- f_equal. erewrite !Vector.map_map, Vector.map_ext. reflexivity. apply embed_subst_t'.
- firstorder congruence.
- rewrite IHphi. f_equal. apply subst_ext. intros []; cbn; trivial.
unfold funcomp. cbn. unfold funcomp. now destruct (sigma n) as [x|[]].
Qed.
Lemma prv_embed { p : peirce } A phi :
A ⊢ phi -> (map embed' A) ⊢ embed' phi.
Proof.
intros H. pattern p, A, phi. revert p A phi H.
apply prv_ind_full; cbn; intros; subst; auto. 1,6-9: eauto.
- apply AllI. apply (Weak H0).
rewrite !map_map. intros psi' [psi [<- HP]] % in_map_iff.
apply in_map_iff. eexists. split; try apply HP.
rewrite embed_subst'. apply subst_ext. reflexivity.
- apply (AllE (embed_t' t)) in H0. rewrite embed_subst'.
erewrite subst_ext; try apply H0. now intros [|n].
- apply (ExI (embed_t' t)). rewrite embed_subst' in H0.
erewrite subst_ext; try apply H0. now intros [|n].
- eapply ExE; try apply H0. rewrite embed_subst' in H2.
erewrite subst_ext; try apply (Weak H2); try now intros [|n].
rewrite !map_map. intros theta' [<-|[theta [<- HP]] % in_map_iff]; auto.
right. apply in_map_iff. eexists. split; try apply HP.
rewrite embed_subst'. apply subst_ext. reflexivity.
Qed.
Definition solvable' B :=
embed' (impl (rev minZFeq') (rm_const_fm (solvable B))).
Theorem PCP_FSTD { p : peirce } B :
PCPb B -> FSTeq ⊢ solvable' B.
Proof.
intros H. apply Weak with nil; auto.
change nil with (map embed' nil). apply prv_embed.
apply impl_prv. rewrite rev_involutive, app_nil_r.
change minZFeq' with (map rm_const_fm nil ++ minZFeq'). apply rm_const_prv.
cbn. now apply PCP_ZFD.
Qed.
Section IM.
Instance FST_interp : interp Acz.
Proof.
split; intros [].
- intros _. exact AEmpty.
- intros v.
exact (Aunion (Aupair (Aupair (Vector.hd v) (Vector.hd v)) (Vector.hd (Vector.tl v)))).
- intros v. exact (Ain (Vector.hd v) (Vector.hd (Vector.tl v))).
- intros v. exact (Aeq (Vector.hd v) (Vector.hd (Vector.tl v))).
Defined.
Lemma FST_standard :
standard Acz_interp.
Proof.
intros s [n Hn]. cbn in Hn. exists n. apply Hn.
Qed.
Lemma FST_FSTeq rho :
rho ⊫ FSTeq.
Proof.
intros phi [<-|[<-|[<-|[<-|[<-|[<-|[<-|[]]]]]]]]; cbn -[Aunion].
- apply Aeq_ref.
- apply Aeq_sym.
- apply Aeq_tra.
- intros s t s' t' -> ->. tauto.
- apply Aeq_ext.
- apply AEmptyAx.
- intros X Y Z. rewrite AunionAx. split; intros H.
+ destruct H as [A[H1 H2]]. apply AupairAx in H1 as [H1|H1].
* left. rewrite H1 in H2. apply AupairAx in H2. tauto.
* right. rewrite <- H1. tauto.
+ destruct H as [H|H].
* exists (Aupair Y Y). rewrite !AupairAx. intuition.
* exists X. split; trivial. apply AupairAx. now right.
Qed.
End IM.
Section Model.
Open Scope sem.
Context {V : Type} {I : interp V}.
Hypothesis M_ZF : forall rho, rho ⊫ FST.
Instance min_model' : interp sig_empty ZF_pred_sig V.
Proof.
split.
- intros [].
- intros [].
+ apply (@i_atom _ _ _ I elem).
+ apply (@i_atom _ _ _ I equal).
Defined.
Lemma min_embed_eval' (rho : nat -> V) (t : term') :
eval rho (embed_t' t) = eval rho t.
Proof.
destruct t as [|[]]. reflexivity.
Qed.
Lemma min_embed' (rho : nat -> V) phi :
sat I rho (embed' phi) <-> sat min_model' rho phi.
Proof.
induction phi in rho |- *; try destruct b0; try destruct q; cbn.
1,3-7: firstorder. destruct P; erewrite Vector.map_map, Vector.map_ext.
reflexivity. apply min_embed_eval'.
reflexivity. apply min_embed_eval'.
Qed.
End Model.
Theorem PCP_FST B :
entailment_FSTeq (solvable' B) -> PCPb B.
Proof.
intros H. specialize (H Acz FST_interp). unshelve eapply PCP_ZFeq.
- exact Acz.
- exact Acz_interp.
- intros N. apply AEmpty.
- apply Acz_ZFeq'.
- apply Acz_standard.
- specialize (H (fun _ : nat => AEmpty) FST_FSTeq).
assert (HE : @min_model Acz Acz_interp = @min_model' Acz FST_interp).
{ unfold min_model, min_model'. f_equal. }
apply min_embed' in H. apply impl_sat in H.
+ rewrite <- HE in H. apply min_correct in H; trivial. apply Acz_ZFeq'.
+ intros phi Hp % in_rev. specialize (@min_axioms' Acz Acz_interp). intros HA.
rewrite <- HE. apply HA; trivial. apply Acz_ZFeq'.
Qed.