From Undecidability.FOL Require Import Syntax.Facts Semantics.Tarski.FullFacts Semantics.FiniteTarski.Full.
Require Import Undecidability.Synthetic.Definitions.
Require Import Vector Lia.
Set Default Goal Selector "!".
Section Signature.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Definition exclosure phi : form :=
let (N, _) := find_bounded phi in exist_times N phi.
Lemma exclosure_closed phi :
bounded 0 (exclosure phi).
Proof.
unfold exclosure. destruct find_bounded as [N HN]. now apply exists_close_form.
Qed.
Definition form2cform phi : cform :=
exist _ (exclosure phi) (exclosure_closed phi).
Theorem reduction :
FSATd ⪯ FSATdc.
Proof.
exists form2cform. intros phi; unfold FSATdc; cbn.
unfold exclosure. destruct find_bounded as [N HN].
split; intros (D & M & rho & H1 & H2 & H3 & H4); exists D, M.
- exists rho. repeat split; trivial. eapply subst_exist_sat; eauto.
- apply subst_exist_sat2 in H4 as [sigma H]. exists sigma. repeat split; trivial.
Qed.
End Signature.
Require Import Undecidability.Synthetic.Definitions.
Require Import Vector Lia.
Set Default Goal Selector "!".
Section Signature.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Definition exclosure phi : form :=
let (N, _) := find_bounded phi in exist_times N phi.
Lemma exclosure_closed phi :
bounded 0 (exclosure phi).
Proof.
unfold exclosure. destruct find_bounded as [N HN]. now apply exists_close_form.
Qed.
Definition form2cform phi : cform :=
exist _ (exclosure phi) (exclosure_closed phi).
Theorem reduction :
FSATd ⪯ FSATdc.
Proof.
exists form2cform. intros phi; unfold FSATdc; cbn.
unfold exclosure. destruct find_bounded as [N HN].
split; intros (D & M & rho & H1 & H2 & H3 & H4); exists D, M.
- exists rho. repeat split; trivial. eapply subst_exist_sat; eauto.
- apply subst_exist_sat2 in H4 as [sigma H]. exists sigma. repeat split; trivial.
Qed.
End Signature.