From Undecidability.PCP Require Import PCP Util.PCP_facts.
From Undecidability.FOL Require Import Deduction.FragmentNDFacts Semantics.Tarski.FragmentFacts Semantics.Tarski.FragmentSoundness Syntax.Core Syntax.Facts.
From Undecidability.FOL.Undecidability Require Import FOL.
From Undecidability.Synthetic Require Import Definitions DecidabilityFacts EnumerabilityFacts ReducibilityFacts.
Require Import Undecidability.FOL.Undecidability.Reductions.PCPb_to_FOL.
Require Import Undecidability.PCP.Reductions.PCPb_iff_dPCPb.
Require Import List.
Require Import Undecidability.Shared.ListAutomation.
Import ListNotations.
Set Default Proof Using "Type".
Implicit Type b : falsity_flag.
Definition cprv := @prv _ _ falsity_on class.
#[global]
Instance iUnit (P : Prop) : interp unit.
Proof.
split; intros [] v.
- exact tt.
- exact tt.
- exact True.
- exact P.
Defined.
Local Hint Constructors prv : core.
Fixpoint cast {b} (phi : form b) : form falsity_on :=
match phi with
| atom P v => atom P v
| falsity => falsity
| bin Impl phi psi => bin (b := falsity_on) Impl (cast phi) (cast psi)
| quant All phi => quant (b := falsity_on) All (cast phi)
end.
Lemma subst_cast {b} sigma phi :
cast (subst_form sigma phi) = subst_form sigma (cast phi).
Proof.
induction phi in sigma |- *; cbn in *; trivial.
- destruct b0. cbn. congruence.
- destruct q. cbn. congruence.
Qed.
Lemma MND_CND A (phi : form falsity_off) :
A ⊢M phi -> map cast A ⊢C cast phi.
Proof.
revert A phi. remember falsity_off as b. intros.
induction H; cbn in *; subst; try congruence.
- eapply II; eauto.
- eapply IE; try now apply IHprv1. now apply IHprv2.
- eapply AllI. rewrite map_map. rewrite map_map in IHprv.
erewrite map_ext; try now apply IHprv. intros psi. cbn. now rewrite subst_cast.
- setoid_rewrite subst_cast. eapply AllE; eauto.
- eapply Ctx, in_map_iff; eauto.
- apply Pc.
Qed.
Lemma DN A phi :
A ⊢C (¬¬phi) -> A ⊢C phi.
Proof.
intros H. eapply IE with ((phi → falsity) → phi); try apply Pc.
apply II, Exp. eapply IE. apply (Weak H); auto. now apply Ctx.
Qed.
Lemma cnd_XM:
(forall (phi : form falsity_on), cprv nil phi -> valid phi) ->
forall P, ~~ P -> P.
Proof.
intros H P. specialize (H ((¬¬Q) → Q)).
refine (H _ unit (iUnit P) (fun _ => tt)).
eapply II. eapply DN. eauto.
Qed.
Definition dnQ {b} (phi : form b) : form b := (phi → Q) → Q.
Fixpoint trans {b} (phi : form b) : form b :=
match phi with
| bin Impl phi1 phi2 => bin Impl (trans phi1) (trans phi2)
| quant All phi => quant All (trans phi)
| atom sPr v => dnQ (atom sPr v)
| atom _ _ => atom sQ (Vector.nil _)
| falsity => @atom _ _ _ falsity_on sQ (Vector.nil _)
end.
Lemma trans_subst b sigma (phi : form b) :
trans (subst_form sigma phi) = subst_form sigma (trans phi).
Proof.
induction phi in sigma |- *; cbn; trivial.
- now destruct P.
- destruct b0. cbn. congruence.
- destruct q. cbn. congruence.
Qed.
Lemma appCtx b psi1 psi2 A :
In (psi1 → psi2) A -> A ⊢I psi1 -> A ⊢I psi2.
Proof.
intros. eapply (IE (phi := psi1) (psi := psi2)); eauto using Ctx.
Qed.
Lemma app1 b psi1 psi2 A :
(psi1 → psi2 :: A) ⊢I psi1 -> (psi1 → psi2 :: A) ⊢I psi2.
Proof.
intros. eapply appCtx; eauto.
Qed.
Lemma app2 b psi1 psi2 A phi :
(phi :: psi1 → psi2 :: A) ⊢I psi1 -> (phi :: psi1 → psi2 :: A) ⊢I psi2.
Proof.
intros. eapply appCtx; eauto.
Qed.
Lemma app3 b psi1 psi2 A phi phi2 :
(phi :: phi2 :: psi1 → psi2 :: A) ⊢I psi1 -> (phi :: phi2 :: psi1 → psi2 :: A) ⊢I psi2.
Proof.
intros. eapply appCtx; eauto.
Qed.
Lemma trans_trans' b (phi : form b) A sigma tau :
(map (subst_form tau) A) ⊢I ((dnQ (trans phi[sigma])) → trans phi[sigma]).
Proof.
revert A sigma tau. induction phi; cbn; intros; try destruct P; try destruct b0; try destruct q.
- cbn. eapply II. eapply app1. eapply II. eapply Ctx. eauto.
- eapply II. eapply II. eapply app2. eapply II.
eapply app1. eapply Ctx. eauto.
- eapply II. eapply app1. eapply II. eapply Ctx. eauto.
- eapply II. eapply II. apply IE with (dnQ (trans phi2[sigma])). specialize (IHphi2 A sigma tau). apply (Weak IHphi2). auto.
eapply II. eapply app3. eapply II. eapply app2. eapply app1. eapply Ctx. eauto.
- apply II, AllI. apply IE with (dnQ (trans phi[up sigma])).
+ apply IHphi.
+ apply II. eapply IE. { apply Ctx. right. left. cbn. reflexivity. }
apply II. eapply IE. { apply Ctx. right. left. reflexivity. }
replace (trans phi[up sigma]) with (((trans (phi[up sigma]))[up ↑])[($0)..]) at 4.
* apply AllE. apply Ctx. now left.
* setoid_rewrite trans_subst. cbn. repeat setoid_rewrite subst_comp.
apply subst_ext. intros n. unfold funcomp. cbn.
apply subst_term_id. now intros [].
Qed.
Lemma trans_trans b (phi : form b) A :
A ⊢I ((dnQ (trans phi)) → trans phi).
Proof.
specialize (trans_trans' phi A var var).
rewrite subst_var. intros H. apply (Weak H).
clear H. induction A; cbn; trivial. setoid_rewrite subst_var. auto.
Qed.
Goal (forall X, ~ ~ X -> X) -> (forall (X Y : Prop), ((X -> Y) -> X) -> X).
Proof.
intros H X Y. apply H. intros H'. clear H.
apply H'. intros f. apply f. intros x. exfalso.
apply H'. intros _. exact x.
Qed.
Lemma Double' b A (phi : form b) :
A ⊢C phi -> map trans A ⊢I trans phi.
Proof.
remember class as s; induction 1; subst.
- cbn. eapply II. eauto.
- eapply IE; eauto.
- cbn. apply AllI. rewrite map_map. rewrite map_map in IHprv.
erewrite map_ext; try now apply IHprv. intros psi. cbn. now rewrite trans_subst.
- setoid_rewrite trans_subst. eapply AllE; eauto.
- specialize (IHprv eq_refl). eapply IE; try apply trans_trans.
apply II. apply (Weak IHprv). auto.
- eapply Ctx. now eapply in_map.
- eapply IE; try apply trans_trans.
apply II. eapply IE; try now apply Ctx.
cbn. apply II. eapply IE; try now apply Ctx.
apply II. eapply IE; try apply trans_trans.
apply II. eapply IE.
+ apply Ctx. right. right. right. now left.
+ apply II. apply Ctx. auto.
Qed.
Lemma Double b (phi : form b) :
[] ⊢C phi -> [] ⊢I (trans phi).
Proof.
eapply Double'.
Qed.
Section BPCP_CND.
Local Definition BSRS := list (card bool).
Variable R : BSRS.
Context {ff : falsity_flag}.
Lemma BPCP_to_CND :
PCPb R -> [] ⊢C (F R).
Proof.
intros H. rewrite PCPb_iff_dPCPb in *. now apply BPCP_prv'.
Qed.
Lemma impl_trans A phi :
trans (A ==> phi) = (map trans A) ==> trans phi.
Proof.
induction A; cbn; congruence.
Qed.
Lemma CND_BPCP :
[] ⊢C (F R) -> PCPb R.
Proof.
intros H % Double % soundness.
specialize (H _ (IB R) (fun _ => nil)).
unfold F, F1, F2 in H. rewrite !impl_trans, !map_map, !impl_sat in H. cbn in H.
eapply PCPb_iff_dPCPb. eapply H; try tauto.
- intros ? [(x,y) [<- ?] ] % in_map_iff ?. cbn in *. eapply H1.
left. now rewrite !IB_enc.
- intros ? [(x,y) [<- ?] ] % in_map_iff ? ? ? ?. cbn in *. eapply H1. intros.
eapply H2. rewrite !IB_prep. cbn. econstructor 2; trivial.
- intros. eapply H0. intros. unfold dPCPb, dPCP. eauto.
Qed.
Lemma BPCP_CND :
PCPb R <-> [] ⊢C (F R).
Proof.
split. eapply BPCP_to_CND. intros ? % CND_BPCP. eauto.
Qed.
End BPCP_CND.
Theorem cprv_red :
PCPb ⪯ FOL_prv_class.
Proof.
exists (fun R => F R). intros R. apply (BPCP_CND R).
Qed.
Corollary cprv_undec :
UA -> ~ decidable (cprv nil).
Proof.
intros H. now apply (not_decidable cprv_red).
Qed.
Corollary cprv_unenum :
UA -> ~ enumerable (complement (@cprv nil)).
Proof.
intros H. apply (not_coenumerable cprv_red); trivial.
Qed.