Require Import Undecidability.FOL.Syntax.Facts.
Require Import Undecidability.FOL.Semantics.Tarski.FullFacts.
From Undecidability.FOL.Sets Require Import minZF ZF.
Require Import Undecidability.FOL.Sets.ZF.
From Undecidability.FOL.Undecidability.Reductions Require Import PCPb_to_ZF PCPb_to_ZFeq PCPb_to_minZF.
From Undecidability Require Import Shared.ListAutomation.
Import ListAutomationNotations.
Local Set Implicit Arguments.
Local Unset Strict Implicit.
Require Import Morphisms.
Set Default Proof Using "Type".
Local Notation vec := Vector.t.
#[local] Notation term' := (term sig_empty).
#[local] Notation form' := (form sig_empty _ _ falsity_on).
Section Model.
Open Scope sem.
Context {V : Type} {I : interp V}.
Hypothesis M_ZF : forall rho, rho ⊫ ZFeq'.
Instance min_model : interp sig_empty _ V.
Proof using I.
split.
- intros [].
- now apply i_atom.
Defined.
Lemma min_embed_eval (rho : nat -> V) (t : term') :
eval rho (embed_t t) = eval rho t.
Proof.
destruct t as [|[]]. reflexivity.
Qed.
Lemma min_embed (rho : nat -> V) (phi : form') :
sat I rho (embed phi) <-> sat min_model rho phi.
Proof.
induction phi in rho |- *; try destruct b0; try destruct q; cbn.
1,3-7: firstorder. erewrite Vector.map_map, Vector.map_ext.
reflexivity. apply min_embed_eval.
Qed.
Lemma embed_subst_t (sigma : nat -> term') (t : term') :
embed_t t`[sigma] = (embed_t t)`[sigma >> embed_t].
Proof.
induction t; cbn; trivial. destruct F.
Qed.
Lemma embed_subst (sigma : nat -> term') (phi : form') :
embed phi[sigma] = (embed phi)[sigma >> embed_t].
Proof.
induction phi in sigma |- *; cbn; trivial.
- f_equal. erewrite !Vector.map_map, Vector.map_ext. reflexivity. apply embed_subst_t.
- firstorder congruence.
- rewrite IHphi. f_equal. apply subst_ext. intros []; cbn; trivial.
unfold funcomp. cbn. unfold funcomp. now destruct (sigma n) as [x|[]].
Qed.
Lemma embed_sshift n (phi : form') :
embed phi[sshift n] = (embed phi)[sshift n].
Proof.
rewrite embed_subst. apply subst_ext. now intros [].
Qed.
Lemma sat_sshift1 (rho : nat -> V) x y (phi : form) :
(y .: x .: rho) ⊨ phi[sshift 1] <-> (y .: rho) ⊨ phi.
Proof.
erewrite sat_comp, sat_ext. reflexivity. now intros [].
Qed.
Lemma sat_sshift2 (rho : nat -> V) x y z (phi : form) :
(z .: y .: x .: rho) ⊨ phi[sshift 2] <-> (z .: rho) ⊨ phi.
Proof.
erewrite sat_comp, sat_ext. reflexivity. now intros [].
Qed.
Lemma inductive_sat (rho : nat -> V) x :
(x .: rho) ⊨ is_inductive $0 -> M_inductive x.
Proof using M_ZF.
cbn. split.
- destruct H as [[y Hy] _]. enough (H : ∅ ≡ y).
{ eapply set_equiv_elem; eauto. now apply set_equiv_equiv. apply Hy. }
apply M_ext; trivial; intros z Hz; exfalso.
+ now apply M_eset in Hz.
+ firstorder easy.
- intros y [z Hz] % H. enough (Hx : σ y ≡ z).
{ eapply set_equiv_elem; eauto. now apply set_equiv_equiv. apply Hz. }
apply M_ext; trivial.
+ intros a Ha % sigma_el; trivial. now apply Hz.
+ intros a Ha % Hz. now apply sigma_el.
Qed.
Lemma inductive_sat_om (rho : nat -> V) :
(ω .: rho) ⊨ is_inductive $0.
Proof using M_ZF.
cbn. split.
- exists ∅. split; try apply M_eset; trivial. now apply M_om1.
- intros d Hd. exists (σ d). split; try now apply M_om1. intros d'. now apply sigma_el.
Qed.
Instance set_equiv_equiv' :
Equivalence set_equiv.
Proof using M_ZF.
now apply set_equiv_equiv.
Qed.
Instance set_equiv_elem' :
Proper (set_equiv ==> set_equiv ==> iff) set_elem.
Proof using M_ZF.
now apply set_equiv_elem.
Qed.
Instance set_equiv_sub' :
Proper (set_equiv ==> set_equiv ==> iff) set_sub.
Proof using M_ZF.
now apply set_equiv_sub.
Qed.
Instance equiv_union' :
Proper (set_equiv ==> set_equiv) union.
Proof using M_ZF.
now apply equiv_union.
Qed.
Instance equiv_power' :
Proper (set_equiv ==> set_equiv) power.
Proof using M_ZF.
now apply equiv_power.
Qed.
Lemma rm_const_tm_sat (rho : nat -> V) (t : term) x :
(x .: rho) ⊨ embed (rm_const_tm t) <-> set_equiv x (eval rho t).
Proof using M_ZF.
induction t in x |- *; try destruct F; cbn; split;
try rewrite (vec_inv1 v); try rewrite (vec_inv2 v); cbn.
- tauto.
- tauto.
- rewrite (vec_nil_eq (Vector.map (eval rho) v)).
intros H. apply M_ext; trivial; intros y Hy; exfalso.
+ firstorder easy.
+ now apply M_eset in Hy.
- rewrite (vec_nil_eq (Vector.map (eval rho) v)).
change (set_equiv x ∅ -> forall d : V, set_elem d x -> False).
intros H d. rewrite H. now apply M_eset.
- intros (y & Hy & z & Hz & H).
rewrite embed_sshift, sat_sshift1, IH in Hy; try apply in_hd.
rewrite embed_sshift, sat_sshift2, IH in Hz; try apply in_hd_tl.
apply M_ext; trivial.
+ intros a Ha % H. apply M_pair; trivial.
rewrite <- Hy, <- Hz. tauto.
+ intros a Ha % M_pair; trivial. apply H.
rewrite <- Hy, <- Hz in Ha. tauto.
- exists (eval rho (Vector.hd v)).
rewrite embed_sshift, sat_sshift1, IH; try apply in_hd. split; try reflexivity.
exists (eval rho (Vector.hd (Vector.tl v))).
rewrite embed_sshift, sat_sshift2, IH; try apply in_hd_tl. split; try reflexivity.
change (forall d, (set_elem d x -> d ≡ eval rho (Vector.hd v) \/ d ≡ eval rho (Vector.hd (Vector.tl v))) /\
(d ≡ eval rho (Vector.hd v) \/ d ≡ eval rho (Vector.hd (Vector.tl v)) -> set_elem d x)).
intros d. rewrite H. now apply M_pair.
- intros (y & Hy & H). rewrite embed_sshift, sat_sshift1, IH in Hy; try apply in_hd.
change (set_equiv x (union (eval rho (Vector.hd v)))). rewrite <- Hy. apply M_ext; trivial.
+ intros z Hz % H. now apply M_union.
+ intros z Hz % M_union; trivial. now apply H.
- exists (eval rho (Vector.hd v)). rewrite embed_sshift, sat_sshift1, IH; try apply in_hd. split; try reflexivity.
change (forall d, (set_elem d x -> exists d0 : V, d0 ∈ eval rho (Vector.hd v) /\ d ∈ d0) /\
((exists d0 : V, d0 ∈ eval rho (Vector.hd v) /\ d ∈ d0) -> set_elem d x)).
intros d. rewrite H. now apply M_union.
- intros (y & Hy & H). rewrite embed_sshift, sat_sshift1, IH in Hy; try apply in_hd.
change (set_equiv x (power (eval rho (Vector.hd v)))). rewrite <- Hy. apply M_ext; trivial.
+ intros z Hz. apply M_power; trivial. unfold set_sub. now apply H.
+ intros z Hz. now apply H, M_power.
- exists (eval rho (Vector.hd v)).
rewrite embed_sshift, sat_sshift1, IH; try apply in_hd. split; try reflexivity.
change (forall d, (set_elem d x -> d ⊆ eval rho (Vector.hd v)) /\ (d ⊆ eval rho (Vector.hd v) -> set_elem d x)).
intros d. rewrite H. now apply M_power.
- rewrite (vec_nil_eq (Vector.map (eval rho) v)). intros [H1 H2]. apply M_ext; trivial.
+ unfold set_sub. apply H2. apply (inductive_sat_om rho).
+ unfold set_sub. apply M_om2; trivial. apply inductive_sat with rho. apply H1.
- rewrite (vec_nil_eq (Vector.map (eval rho) v)). split.
+ change ((exists d : V, (forall d0 : V, d0 ∈ d -> False) /\ set_elem d x) /\ (forall d : V, set_elem d x
-> exists d0 : V, (forall d1 : V, (d1 ∈ d0 -> d1 ∈ d \/ d1 ≡ d) /\ (d1 ∈ d \/ d1 ≡ d -> d1 ∈ d0)) /\ set_elem d0 x)).
setoid_rewrite H. apply (inductive_sat_om rho).
+ intros d Hd. change (set_sub x d). rewrite H. unfold set_sub.
apply M_om2; trivial. apply inductive_sat with rho. apply Hd.
Qed.
Lemma rm_const_sat (rho : nat -> V) (phi : form) :
rho ⊨ phi <-> rho ⊨ embed (rm_const_fm phi).
Proof using M_ZF.
induction phi in rho |- *; try destruct P; try destruct b0; try destruct q; cbn.
1: firstorder easy.
3-5: specialize (IHphi1 rho); specialize (IHphi2 rho); intuition easy.
- rewrite (vec_inv2 t). cbn. split.
+ intros H. exists (eval rho (Vector.hd t)). rewrite rm_const_tm_sat. split; try reflexivity.
exists (eval rho (Vector.hd (Vector.tl t))). now rewrite embed_sshift, sat_sshift1, rm_const_tm_sat.
+ intros (x & Hx & y & Hy & H). apply rm_const_tm_sat in Hx.
change (set_elem (eval rho (Vector.hd t)) (eval rho (Vector.hd (Vector.tl t)))).
rewrite embed_sshift, sat_sshift1, rm_const_tm_sat in Hy. now rewrite <- Hx, <- Hy.
- rewrite (vec_inv2 t). cbn. split.
+ intros H. exists (eval rho (Vector.hd t)). rewrite rm_const_tm_sat. split; try reflexivity.
exists (eval rho (Vector.hd (Vector.tl t))). rewrite embed_sshift, sat_sshift1, rm_const_tm_sat.
split; trivial. reflexivity.
+ intros (x & Hx & y & Hy & H). apply rm_const_tm_sat in Hx.
change (set_equiv (eval rho (Vector.hd t)) (eval rho (Vector.hd (Vector.tl t)))).
rewrite embed_sshift, sat_sshift1, rm_const_tm_sat in Hy. now rewrite <- Hx, <- Hy.
- split; intros; apply IHphi, H.
- firstorder eauto.
Qed.
Theorem min_correct (rho : nat -> V) (phi : form) :
sat I rho phi <-> sat min_model rho (rm_const_fm phi).
Proof using M_ZF.
rewrite <- min_embed. apply rm_const_sat.
Qed.
Lemma min_axioms' (rho : nat -> V) :
rho ⊫ minZFeq'.
Proof using M_ZF.
intros A [<-|[<-|[<-|[<-|[<-|[<-|[<-|[<-|[<-|[<-|[]]]]]]]]]]]; cbn.
- now apply set_equiv_equiv.
- now apply set_equiv_equiv.
- now apply set_equiv_equiv.
- intros x x' y y' Hx Hy. now apply set_equiv_elem.
- intros x y H1 H2. now apply M_ext.
- exists ∅. apply (@M_ZF rho ax_eset). firstorder.
- intros x y. exists ({x; y}). apply (@M_ZF rho ax_pair). firstorder.
- intros x. exists (⋃ x). apply (@M_ZF rho ax_union). firstorder.
- intros x. exists (PP x). apply (@M_ZF rho ax_power). firstorder.
- exists ω. split. split.
+ exists ∅. split. apply (@M_ZF rho ax_eset). firstorder. apply (@M_ZF rho ax_om1). firstorder.
+ intros x Hx. exists (σ x). split. 2: apply (@M_ZF rho ax_om1); firstorder.
intros y. now apply sigma_el.
+ intros x [H1 H2]. apply (@M_ZF rho ax_om2); cbn. auto 12. split.
* destruct H1 as (e & E1 & E2). change (set_elem ∅ x).
enough (set_equiv ∅ e) as -> by assumption.
apply M_ext; trivial. all: intros y Hy; exfalso; try now apply E1 in Hy.
apply (@M_ZF rho ax_eset) in Hy; trivial. unfold ZFeq', ZF'. auto 8.
* intros d (s & S1 & S2) % H2. change (set_elem (σ d) x).
enough (set_equiv (σ d) s) as -> by assumption.
apply M_ext; trivial. all: intros y; rewrite sigma_el; trivial; apply S1.
Qed.
End Model.