From Undecidability.FOL.Syntax Require Import Core Facts Asimpl.
From Undecidability.FOL.Semantics.Tarski Require Import FullCore FullFacts.
From Undecidability.FOL.Arithmetics Require Import Signature.
Require Import Lia Vector List.
Import Vector.VectorNotations.
Import List.ListNotations.
Local Set Implicit Arguments.
Local Unset Strict Implicit.
Local Notation vec := Vector.t.
Section PNFrules.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {D: Type} {i: interp D}.
Definition DN := forall P, ~~P -> P.
Definition IndependenceOfGeneralPremises :=
forall (d : D) (P:D -> Prop) (Q:Prop),
(Q -> exists x, P x) -> exists x, (Q -> P x).
Lemma DN_to_IndependenceOfGeneralPremises :
DN -> IndependenceOfGeneralPremises.
Proof. intros DN. unfold IndependenceOfGeneralPremises.
intros d P Q H. apply DN. intros nH. apply nH.
exists d. intros q. exfalso. apply nH.
specialize (H q) as [x Px]. now exists x.
Qed.
Lemma up_equiv {b:falsity_flag}:
forall ρ ϕ x, sat ρ ϕ <-> sat (x.:ρ) ϕ[↑].
Proof.
intros. split.
- intros. apply sat_comp. eapply sat_ext; eauto.
- intros H%sat_comp. eapply sat_ext; eauto.
Qed.
Lemma PNF_allAnd {b:falsity_flag}:
forall ρ ϕ ψ, sat ρ ((∀ ϕ) ∧ ψ ↔ ∀ ϕ ∧ ψ[↑]).
Proof.
split; cbn.
- intros []. split; [auto | now apply up_equiv].
- intros H. split.
+ intros. now specialize (H d) as [H1 H2%sat_comp].
+ destruct (H (ρ 42)). eapply up_equiv, H1.
Qed.
Lemma PNF_andAll {b:falsity_flag}:
forall ρ ϕ ψ, sat ρ (ϕ ∧ (∀ ψ) ↔ ∀ ϕ[↑] ∧ ψ).
Proof.
intros ρ ϕ ψ. specialize (PNF_allAnd ρ ψ ϕ) as H. cbn in *. firstorder.
Qed.
Lemma PNF_all_Or1 {b:falsity_flag}:
forall ρ ϕ ψ, sat ρ ((∀ ϕ) ∨ ψ → ∀ ϕ ∨ ψ[↑]).
Proof.
cbn.
intros ρ ϕ ψ [] d.
+ now left.
+ right. now apply up_equiv.
Qed.
Lemma PNF_all_Or2 {b:falsity_flag}:
DN -> forall ρ ϕ ψ, sat ρ ((∀ ϕ ∨ ψ[↑]) → ((∀ ϕ) ∨ ψ)) .
Proof.
cbn. intros DN ρ ϕ ψ H. apply DN. intros nH. apply nH. left. intros d. specialize (H d) as [H | H].
+ auto.
+ exfalso. apply nH. right. eapply up_equiv, H.
Qed.
Lemma PNF_allOr {b:falsity_flag}:
DN -> forall ρ ϕ ψ, sat ρ (((∀ ϕ) ∨ ψ) ↔ (∀ ϕ ∨ ψ[↑])).
Proof.
intros DN. split; [apply PNF_all_Or1|apply PNF_all_Or2, DN].
Qed.
Lemma PNF_orAll {b:falsity_flag}:
DN -> forall ρ ϕ ψ, sat ρ ((ϕ ∨ (∀ψ) ↔ (∀ ϕ[↑] ∨ ψ))).
Proof.
intros DN ρ ϕ ψ. specialize (PNF_allOr DN ρ ψ ϕ) as H. cbn in *. revert H. clear. firstorder.
Qed.
Lemma PNF_existsAnd {b:falsity_flag}:
forall ρ ϕ ψ, sat ρ (((∃ ϕ) ∧ ψ) ↔ (∃ ϕ ∧ ψ[↑])).
Proof.
split; cbn.
- intros [[]]. eexists. split; [eauto | now apply up_equiv].
- intros [? []]. split; [|eapply up_equiv]; eauto.
Qed.
Lemma PNF_andExists {b: falsity_flag}:
forall ρ ϕ ψ, sat ρ ((ϕ ∧ ∃ ψ) ↔ (∃ ϕ[↑] ∧ ψ)).
Proof.
intros ρ ϕ ψ. specialize (PNF_existsAnd ρ ψ ϕ) as H. cbn in *. revert H. clear. firstorder.
Qed.
Lemma PNF_existsOr {b:falsity_flag}:
forall ρ ϕ ψ, sat ρ ((∃ ϕ) ∨ ψ ↔ ∃ ϕ ∨ ψ[↑]).
Proof.
split; cbn.
- intros [[d H]|H].
+ exists d. now left.
+ exists (ρ 1337). right. now apply up_equiv.
- intros [d [H|H]].
+ left. eauto.
+ right. eapply up_equiv, H.
Qed.
Lemma PNF_orExists {b:falsity_flag}:
forall ρ ϕ ψ, sat ρ (ϕ ∨ (∃ ψ) ↔ ∃ ϕ[↑] ∨ ψ).
Proof.
intros ρ ϕ ψ. specialize (PNF_existsOr ρ ψ ϕ) as H. cbn in *. revert H. clear. firstorder.
Qed.
Lemma PNF_allImpl1 {b: falsity_flag}:
DN -> forall ρ ϕ ψ, sat ρ (((∀ ϕ) → ψ) → (∃ ϕ → ψ[↑])).
Proof.
cbn.
intros DN ρ ϕ ψ A. apply DN. intros nE.
apply nE. exists (ρ 27). intros H. apply up_equiv. apply A. intros d.
apply DN. intros nH. apply nE. exists d. contradiction.
Qed.
Lemma PNF_allImpl2 {b: falsity_flag}:
forall ρ ϕ ψ, sat ρ ((∃ ϕ → ψ[↑]) → ((∀ ϕ) → ψ)).
Proof.
cbn. intros ? ? ? [] ?. eapply up_equiv. eauto.
Qed.
Lemma PNF_allImpl {b: falsity_flag}:
DN -> forall ρ ϕ ψ, sat ρ (((∀ ϕ) → ψ) ↔ (∃ ϕ → ψ[↑])).
Proof.
intros DN. split; [apply PNF_allImpl1, DN| apply PNF_allImpl2].
Qed.
Lemma PNF_existsImpl {b: falsity_flag}:
forall ρ ϕ ψ, sat ρ (((∃ ϕ) → ψ) ↔ (∀ ϕ → ψ[↑])).
Proof.
split; cbn.
- intros. apply up_equiv. eauto.
- intros ? []. eapply up_equiv. eauto.
Qed.
Lemma PNF_implAll {b: falsity_flag}:
forall ρ ϕ ψ, sat ρ ((ϕ → ∀ ψ) ↔ (∀ ϕ[↑] → ψ)).
Proof.
split; cbn.
- intros ? ? ?%up_equiv. auto.
- intros H ? d. apply H. now apply up_equiv.
Qed.
Lemma PNF_implExists {b: falsity_flag}:
IndependenceOfGeneralPremises -> forall ρ ϕ ψ, sat ρ ((ϕ → ∃ ψ) ↔ ∃ ϕ[↑] → ψ).
Proof.
intros IndependenceOfGeneralPremises.
split; cbn. - intros H.
assert (exists d : D, ((forall d, (d .: ρ) ⊨ ϕ[↑]) -> (d .: ρ) ⊨ ψ)) as [d H']. {
apply (IndependenceOfGeneralPremises (ρ 42)).
intros H'. apply H. specialize (H' (ρ 27)). apply sat_comp in H'.
eapply sat_ext. 2: exact H'. reflexivity.
}
exists d. intros H''. apply H'. intros d'. apply sat_comp. apply sat_comp in H''.
eapply sat_ext. 2: exact H''. reflexivity.
- intros [d H] ?. eexists. apply H. now apply up_equiv.
Qed.
Lemma equivTrans {ff: falsity_flag} ρ a b c :
ρ ⊨ (a ↔ b) -> ρ ⊨ (c ↔ b) -> ρ ⊨ (a ↔ c).
Proof. firstorder. Qed.
Lemma equivToCoq {ff: falsity_flag} ρ a b :
ρ ⊨ (a ↔ b) -> ρ ⊨ a <-> ρ ⊨ b.
Proof. firstorder. Qed.
Lemma PNF_notExists:
forall ρ ϕ, sat ρ ((¬∃ ϕ) ↔ (∀ ¬ϕ)).
Proof.
intros ? ?.
eapply equivTrans; [apply PNF_existsImpl | now cbn].
Qed.
Lemma PNF_notAll:
DN -> forall ρ ϕ, sat ρ (¬∀ ϕ) <-> sat ρ (∃ ¬ϕ).
Proof.
intros DN ? ?.
eapply equivTrans; [apply (PNF_allImpl DN) | now cbn].
Qed.
End PNFrules.
Section PrenexNormalForm.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {D: Type} {i: interp D}.
Fixpoint noQuant_bool `{falsity_flag} (f: form) : bool :=
match f with
| falsity => true
| atom P v => true
| bin op ϕ1 ϕ2 => noQuant_bool ϕ1 && noQuant_bool ϕ2
| quant op ϕ => false
end.
Fixpoint isPNF_bool `{falsity_flag} (f: form) : bool :=
match f with
| falsity => true
| atom P v => true
| bin op ϕ1 ϕ2 => noQuant_bool ϕ1 && noQuant_bool ϕ2
| quant op ϕ => isPNF_bool ϕ
end.
Inductive noQuant_ind : forall b, form b -> Prop :=
| nQ_false : noQuant_ind falsity
| nQ_atom {b} P v : noQuant_ind ((atom P v): form b)
| nQ_bin {b} op (ϕ1 ϕ2: form b) : noQuant_ind ϕ1 -> noQuant_ind ϕ2 -> noQuant_ind (bin op ϕ1 ϕ2).
Inductive PNF_ind : forall b, form b -> Prop :=
| PNF_noQuant {b} ϕ : @noQuant_ind b ϕ -> PNF_ind ϕ
| PNF_quant {b} op (ϕ: form b) : PNF_ind ϕ -> PNF_ind (quant op ϕ).
#[local] Hint Constructors noQuant_ind : core.
#[local] Hint Constructors PNF_ind : core.
Lemma noQuand_ind_inv {ff: falsity_flag} {ϕ} (nQ : noQuant_ind ϕ) :
match ϕ with
| bin op φ1 φ2 => noQuant_ind φ1 /\ noQuant_ind φ2
| quant _ _ => False
| _ => True
end.
Proof.
induction nQ; easy.
Qed.
Lemma PNF_ind_inversion {ff: falsity_flag} {ϕ} (pnf : PNF_ind ϕ) :
match ϕ with
| quant op φ => PNF_ind φ
| _ => noQuant_ind ϕ
end.
Proof.
induction pnf; destruct ϕ; easy.
Qed.
Fixpoint noQuant_ind_rec
(P : forall b : falsity_flag, form -> Type)
(H0 : P falsity_on ⊥)
(H1 : forall (b : falsity_flag) (P0 : Σ_preds) (v : vec term (ar_preds P0)), P b (atom P0 v : form))
(H2 : forall (b : falsity_flag) (op : binop) (ϕ1 ϕ2 : form), noQuant_ind ϕ1 -> P b ϕ1 -> noQuant_ind ϕ2 -> P b ϕ2 -> P b (bin op ϕ1 ϕ2))
{b : falsity_flag} (f : form) (nQ : noQuant_ind f)
: P b f.
Proof.
destruct f.
- apply H0.
- apply H1.
- apply H2.
+ now destruct (noQuand_ind_inv nQ).
+ apply noQuant_ind_rec; try assumption. now destruct (noQuand_ind_inv nQ).
+ now destruct (noQuand_ind_inv nQ).
+ apply noQuant_ind_rec; try assumption. now destruct (noQuand_ind_inv nQ).
- now destruct (noQuand_ind_inv nQ).
Defined.
Fixpoint PNF_ind_rec
(P : forall b : falsity_flag, form -> Type)
(H0 : forall (b : falsity_flag) (ϕ : form), noQuant_ind ϕ -> P b ϕ)
(H1 : forall (b : falsity_flag) (op : quantop) (ϕ : form), PNF_ind ϕ -> P b ϕ -> P b (quant op ϕ))
{b : falsity_flag} (f : form) (p : PNF_ind f)
: P b f.
Proof.
destruct f.
- apply H0. constructor.
- apply H0. now constructor.
- apply H0. apply (PNF_ind_inversion p).
- apply PNF_ind_inversion in p.
apply H1.
+ assumption.
+ now apply PNF_ind_rec.
Defined.
Lemma noQuant_agree (b: falsity_flag) (ϕ: form b):
noQuant_ind ϕ <-> noQuant_bool ϕ = true.
Proof.
split.
- intros nQi. induction nQi as [|b P v|b op ϕ1 ϕ2 nQi1 IH1 nQi2 IH2].
+ cbn. reflexivity.
+ cbn. reflexivity.
+ cbn. rewrite IH1, IH2. reflexivity.
- induction ϕ as [|b P v|b op ϕ1 IH1 ϕ2 IH2|]; cbn in *.
+ constructor.
+ constructor.
+ destruct (noQuant_bool ϕ1), (noQuant_bool ϕ2); constructor; auto.
+ intros [=].
Qed.
Lemma PNF_agree (b: falsity_flag) (ϕ: form b):
PNF_ind ϕ <-> isPNF_bool ϕ = true.
Proof.
induction ϕ as [|b P v|b op ϕ1 IH1 ϕ2 IH2|b op ϕ IHϕ]; cbn in *; split.
- reflexivity.
- econstructor. constructor.
- reflexivity.
- econstructor. constructor.
- intros H.
destruct (noQuand_ind_inv (PNF_ind_inversion H)).
apply andb_true_intro. split; now apply noQuant_agree.
- intros []%andb_prop. constructor. constructor; now apply noQuant_agree.
- intros H. apply PNF_ind_inversion in H. now apply IHϕ.
- intros. apply PNF_quant. now apply IHϕ.
Qed.
From Undecidability.FOL.Semantics.Tarski Require Import FullCore FullFacts.
From Undecidability.FOL.Arithmetics Require Import Signature.
Require Import Lia Vector List.
Import Vector.VectorNotations.
Import List.ListNotations.
Local Set Implicit Arguments.
Local Unset Strict Implicit.
Local Notation vec := Vector.t.
Section PNFrules.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {D: Type} {i: interp D}.
Definition DN := forall P, ~~P -> P.
Definition IndependenceOfGeneralPremises :=
forall (d : D) (P:D -> Prop) (Q:Prop),
(Q -> exists x, P x) -> exists x, (Q -> P x).
Lemma DN_to_IndependenceOfGeneralPremises :
DN -> IndependenceOfGeneralPremises.
Proof. intros DN. unfold IndependenceOfGeneralPremises.
intros d P Q H. apply DN. intros nH. apply nH.
exists d. intros q. exfalso. apply nH.
specialize (H q) as [x Px]. now exists x.
Qed.
Lemma up_equiv {b:falsity_flag}:
forall ρ ϕ x, sat ρ ϕ <-> sat (x.:ρ) ϕ[↑].
Proof.
intros. split.
- intros. apply sat_comp. eapply sat_ext; eauto.
- intros H%sat_comp. eapply sat_ext; eauto.
Qed.
Lemma PNF_allAnd {b:falsity_flag}:
forall ρ ϕ ψ, sat ρ ((∀ ϕ) ∧ ψ ↔ ∀ ϕ ∧ ψ[↑]).
Proof.
split; cbn.
- intros []. split; [auto | now apply up_equiv].
- intros H. split.
+ intros. now specialize (H d) as [H1 H2%sat_comp].
+ destruct (H (ρ 42)). eapply up_equiv, H1.
Qed.
Lemma PNF_andAll {b:falsity_flag}:
forall ρ ϕ ψ, sat ρ (ϕ ∧ (∀ ψ) ↔ ∀ ϕ[↑] ∧ ψ).
Proof.
intros ρ ϕ ψ. specialize (PNF_allAnd ρ ψ ϕ) as H. cbn in *. firstorder.
Qed.
Lemma PNF_all_Or1 {b:falsity_flag}:
forall ρ ϕ ψ, sat ρ ((∀ ϕ) ∨ ψ → ∀ ϕ ∨ ψ[↑]).
Proof.
cbn.
intros ρ ϕ ψ [] d.
+ now left.
+ right. now apply up_equiv.
Qed.
Lemma PNF_all_Or2 {b:falsity_flag}:
DN -> forall ρ ϕ ψ, sat ρ ((∀ ϕ ∨ ψ[↑]) → ((∀ ϕ) ∨ ψ)) .
Proof.
cbn. intros DN ρ ϕ ψ H. apply DN. intros nH. apply nH. left. intros d. specialize (H d) as [H | H].
+ auto.
+ exfalso. apply nH. right. eapply up_equiv, H.
Qed.
Lemma PNF_allOr {b:falsity_flag}:
DN -> forall ρ ϕ ψ, sat ρ (((∀ ϕ) ∨ ψ) ↔ (∀ ϕ ∨ ψ[↑])).
Proof.
intros DN. split; [apply PNF_all_Or1|apply PNF_all_Or2, DN].
Qed.
Lemma PNF_orAll {b:falsity_flag}:
DN -> forall ρ ϕ ψ, sat ρ ((ϕ ∨ (∀ψ) ↔ (∀ ϕ[↑] ∨ ψ))).
Proof.
intros DN ρ ϕ ψ. specialize (PNF_allOr DN ρ ψ ϕ) as H. cbn in *. revert H. clear. firstorder.
Qed.
Lemma PNF_existsAnd {b:falsity_flag}:
forall ρ ϕ ψ, sat ρ (((∃ ϕ) ∧ ψ) ↔ (∃ ϕ ∧ ψ[↑])).
Proof.
split; cbn.
- intros [[]]. eexists. split; [eauto | now apply up_equiv].
- intros [? []]. split; [|eapply up_equiv]; eauto.
Qed.
Lemma PNF_andExists {b: falsity_flag}:
forall ρ ϕ ψ, sat ρ ((ϕ ∧ ∃ ψ) ↔ (∃ ϕ[↑] ∧ ψ)).
Proof.
intros ρ ϕ ψ. specialize (PNF_existsAnd ρ ψ ϕ) as H. cbn in *. revert H. clear. firstorder.
Qed.
Lemma PNF_existsOr {b:falsity_flag}:
forall ρ ϕ ψ, sat ρ ((∃ ϕ) ∨ ψ ↔ ∃ ϕ ∨ ψ[↑]).
Proof.
split; cbn.
- intros [[d H]|H].
+ exists d. now left.
+ exists (ρ 1337). right. now apply up_equiv.
- intros [d [H|H]].
+ left. eauto.
+ right. eapply up_equiv, H.
Qed.
Lemma PNF_orExists {b:falsity_flag}:
forall ρ ϕ ψ, sat ρ (ϕ ∨ (∃ ψ) ↔ ∃ ϕ[↑] ∨ ψ).
Proof.
intros ρ ϕ ψ. specialize (PNF_existsOr ρ ψ ϕ) as H. cbn in *. revert H. clear. firstorder.
Qed.
Lemma PNF_allImpl1 {b: falsity_flag}:
DN -> forall ρ ϕ ψ, sat ρ (((∀ ϕ) → ψ) → (∃ ϕ → ψ[↑])).
Proof.
cbn.
intros DN ρ ϕ ψ A. apply DN. intros nE.
apply nE. exists (ρ 27). intros H. apply up_equiv. apply A. intros d.
apply DN. intros nH. apply nE. exists d. contradiction.
Qed.
Lemma PNF_allImpl2 {b: falsity_flag}:
forall ρ ϕ ψ, sat ρ ((∃ ϕ → ψ[↑]) → ((∀ ϕ) → ψ)).
Proof.
cbn. intros ? ? ? [] ?. eapply up_equiv. eauto.
Qed.
Lemma PNF_allImpl {b: falsity_flag}:
DN -> forall ρ ϕ ψ, sat ρ (((∀ ϕ) → ψ) ↔ (∃ ϕ → ψ[↑])).
Proof.
intros DN. split; [apply PNF_allImpl1, DN| apply PNF_allImpl2].
Qed.
Lemma PNF_existsImpl {b: falsity_flag}:
forall ρ ϕ ψ, sat ρ (((∃ ϕ) → ψ) ↔ (∀ ϕ → ψ[↑])).
Proof.
split; cbn.
- intros. apply up_equiv. eauto.
- intros ? []. eapply up_equiv. eauto.
Qed.
Lemma PNF_implAll {b: falsity_flag}:
forall ρ ϕ ψ, sat ρ ((ϕ → ∀ ψ) ↔ (∀ ϕ[↑] → ψ)).
Proof.
split; cbn.
- intros ? ? ?%up_equiv. auto.
- intros H ? d. apply H. now apply up_equiv.
Qed.
Lemma PNF_implExists {b: falsity_flag}:
IndependenceOfGeneralPremises -> forall ρ ϕ ψ, sat ρ ((ϕ → ∃ ψ) ↔ ∃ ϕ[↑] → ψ).
Proof.
intros IndependenceOfGeneralPremises.
split; cbn. - intros H.
assert (exists d : D, ((forall d, (d .: ρ) ⊨ ϕ[↑]) -> (d .: ρ) ⊨ ψ)) as [d H']. {
apply (IndependenceOfGeneralPremises (ρ 42)).
intros H'. apply H. specialize (H' (ρ 27)). apply sat_comp in H'.
eapply sat_ext. 2: exact H'. reflexivity.
}
exists d. intros H''. apply H'. intros d'. apply sat_comp. apply sat_comp in H''.
eapply sat_ext. 2: exact H''. reflexivity.
- intros [d H] ?. eexists. apply H. now apply up_equiv.
Qed.
Lemma equivTrans {ff: falsity_flag} ρ a b c :
ρ ⊨ (a ↔ b) -> ρ ⊨ (c ↔ b) -> ρ ⊨ (a ↔ c).
Proof. firstorder. Qed.
Lemma equivToCoq {ff: falsity_flag} ρ a b :
ρ ⊨ (a ↔ b) -> ρ ⊨ a <-> ρ ⊨ b.
Proof. firstorder. Qed.
Lemma PNF_notExists:
forall ρ ϕ, sat ρ ((¬∃ ϕ) ↔ (∀ ¬ϕ)).
Proof.
intros ? ?.
eapply equivTrans; [apply PNF_existsImpl | now cbn].
Qed.
Lemma PNF_notAll:
DN -> forall ρ ϕ, sat ρ (¬∀ ϕ) <-> sat ρ (∃ ¬ϕ).
Proof.
intros DN ? ?.
eapply equivTrans; [apply (PNF_allImpl DN) | now cbn].
Qed.
End PNFrules.
Section PrenexNormalForm.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {D: Type} {i: interp D}.
Fixpoint noQuant_bool `{falsity_flag} (f: form) : bool :=
match f with
| falsity => true
| atom P v => true
| bin op ϕ1 ϕ2 => noQuant_bool ϕ1 && noQuant_bool ϕ2
| quant op ϕ => false
end.
Fixpoint isPNF_bool `{falsity_flag} (f: form) : bool :=
match f with
| falsity => true
| atom P v => true
| bin op ϕ1 ϕ2 => noQuant_bool ϕ1 && noQuant_bool ϕ2
| quant op ϕ => isPNF_bool ϕ
end.
Inductive noQuant_ind : forall b, form b -> Prop :=
| nQ_false : noQuant_ind falsity
| nQ_atom {b} P v : noQuant_ind ((atom P v): form b)
| nQ_bin {b} op (ϕ1 ϕ2: form b) : noQuant_ind ϕ1 -> noQuant_ind ϕ2 -> noQuant_ind (bin op ϕ1 ϕ2).
Inductive PNF_ind : forall b, form b -> Prop :=
| PNF_noQuant {b} ϕ : @noQuant_ind b ϕ -> PNF_ind ϕ
| PNF_quant {b} op (ϕ: form b) : PNF_ind ϕ -> PNF_ind (quant op ϕ).
#[local] Hint Constructors noQuant_ind : core.
#[local] Hint Constructors PNF_ind : core.
Lemma noQuand_ind_inv {ff: falsity_flag} {ϕ} (nQ : noQuant_ind ϕ) :
match ϕ with
| bin op φ1 φ2 => noQuant_ind φ1 /\ noQuant_ind φ2
| quant _ _ => False
| _ => True
end.
Proof.
induction nQ; easy.
Qed.
Lemma PNF_ind_inversion {ff: falsity_flag} {ϕ} (pnf : PNF_ind ϕ) :
match ϕ with
| quant op φ => PNF_ind φ
| _ => noQuant_ind ϕ
end.
Proof.
induction pnf; destruct ϕ; easy.
Qed.
Fixpoint noQuant_ind_rec
(P : forall b : falsity_flag, form -> Type)
(H0 : P falsity_on ⊥)
(H1 : forall (b : falsity_flag) (P0 : Σ_preds) (v : vec term (ar_preds P0)), P b (atom P0 v : form))
(H2 : forall (b : falsity_flag) (op : binop) (ϕ1 ϕ2 : form), noQuant_ind ϕ1 -> P b ϕ1 -> noQuant_ind ϕ2 -> P b ϕ2 -> P b (bin op ϕ1 ϕ2))
{b : falsity_flag} (f : form) (nQ : noQuant_ind f)
: P b f.
Proof.
destruct f.
- apply H0.
- apply H1.
- apply H2.
+ now destruct (noQuand_ind_inv nQ).
+ apply noQuant_ind_rec; try assumption. now destruct (noQuand_ind_inv nQ).
+ now destruct (noQuand_ind_inv nQ).
+ apply noQuant_ind_rec; try assumption. now destruct (noQuand_ind_inv nQ).
- now destruct (noQuand_ind_inv nQ).
Defined.
Fixpoint PNF_ind_rec
(P : forall b : falsity_flag, form -> Type)
(H0 : forall (b : falsity_flag) (ϕ : form), noQuant_ind ϕ -> P b ϕ)
(H1 : forall (b : falsity_flag) (op : quantop) (ϕ : form), PNF_ind ϕ -> P b ϕ -> P b (quant op ϕ))
{b : falsity_flag} (f : form) (p : PNF_ind f)
: P b f.
Proof.
destruct f.
- apply H0. constructor.
- apply H0. now constructor.
- apply H0. apply (PNF_ind_inversion p).
- apply PNF_ind_inversion in p.
apply H1.
+ assumption.
+ now apply PNF_ind_rec.
Defined.
Lemma noQuant_agree (b: falsity_flag) (ϕ: form b):
noQuant_ind ϕ <-> noQuant_bool ϕ = true.
Proof.
split.
- intros nQi. induction nQi as [|b P v|b op ϕ1 ϕ2 nQi1 IH1 nQi2 IH2].
+ cbn. reflexivity.
+ cbn. reflexivity.
+ cbn. rewrite IH1, IH2. reflexivity.
- induction ϕ as [|b P v|b op ϕ1 IH1 ϕ2 IH2|]; cbn in *.
+ constructor.
+ constructor.
+ destruct (noQuant_bool ϕ1), (noQuant_bool ϕ2); constructor; auto.
+ intros [=].
Qed.
Lemma PNF_agree (b: falsity_flag) (ϕ: form b):
PNF_ind ϕ <-> isPNF_bool ϕ = true.
Proof.
induction ϕ as [|b P v|b op ϕ1 IH1 ϕ2 IH2|b op ϕ IHϕ]; cbn in *; split.
- reflexivity.
- econstructor. constructor.
- reflexivity.
- econstructor. constructor.
- intros H.
destruct (noQuand_ind_inv (PNF_ind_inversion H)).
apply andb_true_intro. split; now apply noQuant_agree.
- intros []%andb_prop. constructor. constructor; now apply noQuant_agree.
- intros H. apply PNF_ind_inversion in H. now apply IHϕ.
- intros. apply PNF_quant. now apply IHϕ.
Qed.
convert PNF definiton
Notation upN := (iter up) (only parsing).
Notation shift k := (iter S k >> var).
Definition shift_quant n k := upN n (shift k).
Lemma iter_add_S a : iter S a = Nat.add a.
Proof.
induction a.
- easy.
- cbn. now rewrite IHa.
Qed.
Lemma upNup sig n :
upN n (up sig) = up (upN n sig).
Proof.
now rewrite iter_switch.
Qed.
Lemma upN_explicit n sig j :
upN n sig j = if Compare_dec.lt_dec j n then $j else (sig (j - n))`[shift n].
Proof.
destruct Compare_dec.lt_dec as [lt | geq].
- induction j in lt, n |-*.
+ destruct n as [|n]; [lia|]. now cbn.
+ destruct n as [|n]; [lia|]. cbn.
unfold funcomp. now rewrite IHj by lia.
- induction n as [|n IH] in geq, j |-*.
+ replace (j - 0) with j by lia. now asimpl.
+ destruct j.
* lia.
* cbn. unfold funcomp. rewrite IH by lia. now asimpl.
Qed.
Lemma shift_quant_explicit n k j :
shift_quant n k j = if Compare_dec.lt_dec j n then $j else $(k + j).
Proof.
unfold shift_quant.
rewrite upN_explicit.
destruct Compare_dec.lt_dec.
- reflexivity.
- cbn. unfold shift. f_equal. repeat rewrite iter_add_S. lia.
Qed.
Goal forall x, upN 4 (shift 38) x = ($0 .: $1 .: $2 .: $3 .: (shift 42)) x.
unfold scons, funcomp. cbn.
destruct x; [reflexivity|].
destruct x; [reflexivity|].
destruct x; [reflexivity|].
destruct x; [reflexivity|].
reflexivity.
Qed.
Open Scope list_scope.
Fixpoint swap_quant (qs: list full_logic_quant): list full_logic_quant :=
match qs with
| [] => []
| q::qs =>
match q with
| All => Ex::(swap_quant qs)
| Ex => All::(swap_quant qs)
end
end.
Fixpoint quant_list_to_form `{falsity_flag} (qs : list full_logic_quant) (f : form) : form :=
match qs with
| [] => f
| q::qs => @quant _ _ full_operators _ q (quant_list_to_form qs f)
end.
Fixpoint conv_list `{falsity_flag} (f: form) : list full_logic_quant :=
match f with
| falsity => []
| atom P v => []
| bin op ϕ1 ϕ2 =>
match op with
| Impl => (swap_quant (conv_list ϕ1)) ++ (conv_list ϕ2)
| _ => (conv_list ϕ1) ++ (conv_list ϕ2)
end
| quant op φ => op::(conv_list φ)
end.
Fixpoint conv_form `{falsity_flag} (f: form) : form :=
match f with
| falsity => falsity
| atom P v => atom P v
| bin op φ1 φ2 =>
bin op
((conv_form φ1)[shift (length (conv_list φ2))])
((conv_form φ2)[shift_quant (length (conv_list φ2)) (length (conv_list φ1))])
| quant op φ => conv_form φ
end.
Definition convert_PNF `{falsity_flag} (f : form) : form :=
quant_list_to_form (conv_list f) (conv_form f).
Notation shift k := (iter S k >> var).
Definition shift_quant n k := upN n (shift k).
Lemma iter_add_S a : iter S a = Nat.add a.
Proof.
induction a.
- easy.
- cbn. now rewrite IHa.
Qed.
Lemma upNup sig n :
upN n (up sig) = up (upN n sig).
Proof.
now rewrite iter_switch.
Qed.
Lemma upN_explicit n sig j :
upN n sig j = if Compare_dec.lt_dec j n then $j else (sig (j - n))`[shift n].
Proof.
destruct Compare_dec.lt_dec as [lt | geq].
- induction j in lt, n |-*.
+ destruct n as [|n]; [lia|]. now cbn.
+ destruct n as [|n]; [lia|]. cbn.
unfold funcomp. now rewrite IHj by lia.
- induction n as [|n IH] in geq, j |-*.
+ replace (j - 0) with j by lia. now asimpl.
+ destruct j.
* lia.
* cbn. unfold funcomp. rewrite IH by lia. now asimpl.
Qed.
Lemma shift_quant_explicit n k j :
shift_quant n k j = if Compare_dec.lt_dec j n then $j else $(k + j).
Proof.
unfold shift_quant.
rewrite upN_explicit.
destruct Compare_dec.lt_dec.
- reflexivity.
- cbn. unfold shift. f_equal. repeat rewrite iter_add_S. lia.
Qed.
Goal forall x, upN 4 (shift 38) x = ($0 .: $1 .: $2 .: $3 .: (shift 42)) x.
unfold scons, funcomp. cbn.
destruct x; [reflexivity|].
destruct x; [reflexivity|].
destruct x; [reflexivity|].
destruct x; [reflexivity|].
reflexivity.
Qed.
Open Scope list_scope.
Fixpoint swap_quant (qs: list full_logic_quant): list full_logic_quant :=
match qs with
| [] => []
| q::qs =>
match q with
| All => Ex::(swap_quant qs)
| Ex => All::(swap_quant qs)
end
end.
Fixpoint quant_list_to_form `{falsity_flag} (qs : list full_logic_quant) (f : form) : form :=
match qs with
| [] => f
| q::qs => @quant _ _ full_operators _ q (quant_list_to_form qs f)
end.
Fixpoint conv_list `{falsity_flag} (f: form) : list full_logic_quant :=
match f with
| falsity => []
| atom P v => []
| bin op ϕ1 ϕ2 =>
match op with
| Impl => (swap_quant (conv_list ϕ1)) ++ (conv_list ϕ2)
| _ => (conv_list ϕ1) ++ (conv_list ϕ2)
end
| quant op φ => op::(conv_list φ)
end.
Fixpoint conv_form `{falsity_flag} (f: form) : form :=
match f with
| falsity => falsity
| atom P v => atom P v
| bin op φ1 φ2 =>
bin op
((conv_form φ1)[shift (length (conv_list φ2))])
((conv_form φ2)[shift_quant (length (conv_list φ2)) (length (conv_list φ1))])
| quant op φ => conv_form φ
end.
Definition convert_PNF `{falsity_flag} (f : form) : form :=
quant_list_to_form (conv_list f) (conv_form f).
prove result is in PNF
Lemma noQuant_ind_subst `{falsity_flag} :
forall φ s, noQuant_ind φ -> noQuant_ind φ[s].
Proof.
intros φ s. induction 1; cbn; now constructor.
Qed.
Lemma conv_form_noQuant `{falsity_flag} φ :
noQuant_ind (conv_form φ).
Proof.
induction φ as [|b P v|b op ϕ1 IH1 ϕ2 IH2|b op ϕ IHφ]; cbn.
- constructor.
- constructor.
- destruct op; constructor; now apply noQuant_ind_subst.
- exact IHφ.
Qed.
Lemma list_noQuant_PNF `{b: falsity_flag} qs ϕ :
noQuant_ind ϕ -> PNF_ind (quant_list_to_form qs ϕ).
Proof.
induction qs as [|q qs].
- now constructor.
- intros H. cbn. apply PNF_quant. auto.
Qed.
Lemma convert_PNF_PNF `{falsity_flag} : forall ϕ, PNF_ind (convert_PNF ϕ).
Proof.
intros ϕ. unfold convert_PNF.
apply list_noQuant_PNF, conv_form_noQuant.
Qed.
prove result in PNF is equivilant
Lemma quant_list_to_form_equiv {b: falsity_flag} qs ϕ1 ϕ2:
(forall ρ, sat ρ ϕ1 <-> sat ρ ϕ2) -> forall ρ, sat ρ (quant_list_to_form qs ϕ1) <-> sat ρ (quant_list_to_form qs ϕ2).
Proof.
induction qs as [|[] ? ?]; firstorder.
Qed.
Lemma shift_one_more {b: falsity_flag} φ n :
φ[shift (S n)] = φ[↑][shift n].
Proof.
asimpl. apply subst_ext. intros m. unfold shift, funcomp.
now rewrite iter_switch.
Qed.
Lemma shift_quant_0 n : feq (shift_quant n 0) var.
Proof.
unfold shift_quant. intros x.
enough (forall sigma, (forall x, sigma x = $x) -> (forall x, upN n sigma x = $x)) by auto.
induction n.
- now intros.
- intros sig Hsig. cbn. rewrite iter_switch.
apply IHn. unfold up.
unfold scons. intros [|y]; [reflexivity|].
unfold funcomp. now rewrite Hsig.
Qed.
Lemma shift_quant_add n a b x :
(shift_quant n a x)`[shift_quant n b] = shift_quant n (a+b) x.
Proof.
unfold shift_quant, shift. induction n in a,b,x|-*.
- cbn. f_equal. rewrite !iter_add_S. lia.
- destruct x as [|x].
+ easy.
+ cbn. unfold funcomp at 3. rewrite <- IHn.
rewrite !iter_add_S. unfold funcomp. rewrite !subst_term_comp.
easy.
Qed.
Lemma shift_quant_1 {b: falsity_flag} φ n m:
φ[shift_quant n 1][shift_quant n m] =
φ[shift_quant n (S m)].
Proof.
asimpl. apply subst_ext.
intros p. unfold funcomp. apply shift_quant_add.
Qed.
Lemma quant_list_to_form_rename_free {b: falsity_flag} sigma qs φ:
quant_list_to_form qs φ [upN (length qs) sigma]
= (quant_list_to_form qs φ)[sigma].
Proof.
induction qs as [|q qs IH] in sigma |-*.
- now apply subst_ext.
- cbn [quant_list_to_form]. cbn. f_equal. rewrite iter_switch. apply IH.
Qed.
Lemma quant_list_to_form_rename_free_up {b: falsity_flag} qs φ:
quant_list_to_form qs φ [shift_quant (length qs) 1] = (quant_list_to_form qs φ)[↑].
Proof.
now erewrite <- (quant_list_to_form_rename_free).
Qed.
Lemma AllEquivAll :
forall p q: D -> Prop, (forall d, (p d) <-> (q d)) -> ((forall d, (p d)) <-> forall d, (q d)).
Proof. firstorder. Qed.
Lemma ExEquivEx :
forall p q: D -> Prop, (forall d, (p d) <-> (q d)) -> ((exists d, (p d)) <-> exists d, (q d)).
Proof. firstorder. Qed.
Lemma PNF_equiv_bin_op {b: falsity_flag} (DN: DN) ρ op φ1 φ2:
ρ ⊨ ((convert_PNF (bin op φ1 φ2)) ↔ (bin op (convert_PNF φ1) (convert_PNF φ2))).
Proof.
unfold convert_PNF in *. cbn [conv_list conv_form].
remember (conv_list φ1) as qs1. remember (conv_list φ2) as qs2.
remember (conv_form φ1) as ψ1. remember (conv_form φ2) as ψ2.
clear Heqqs1 Heqqs2 Heqψ1 φ1 Heqψ2 φ2.
revert ρ ψ1 ψ2. induction qs1 as [| q1 qs1 IH1]; [induction qs2 as [|q2 qs2 IH2]|]; intros ρ φ1 φ2.
+ destruct op. all: cbn; split. all: repeat rewrite sat_comp. all: now setoid_rewrite (@sat_ext _ _ _ _ _ ρ ((shift 0 >> eval ρ))).
+ destruct op; destruct q2; cbn [app quant_list_to_form length].
all: setoid_rewrite shift_quant_0.
all: eapply equivTrans; [|apply PNF_andAll + apply PNF_andExists + apply (PNF_orAll DN) + apply PNF_orExists + apply PNF_implAll + apply (PNF_implExists (DN_to_IndependenceOfGeneralPremises DN))].
all: assert (forall ρ a b, (ρ ⊨ (a ↔ b)) <-> (ρ ⊨ a <-> ρ ⊨ b)) as eqEquiv by firstorder.
all: setoid_rewrite eqEquiv in IH2.
all: cbn in *; apply AllEquivAll + apply ExEquivEx.
all: intros d; rewrite <- IH2; apply quant_list_to_form_equiv.
all: now setoid_rewrite shift_one_more; setoid_rewrite shift_quant_0.
+ destruct op; destruct q1; cbn [app quant_list_to_form].
all: eapply equivTrans; [|apply PNF_allAnd + apply PNF_existsAnd + apply (PNF_allOr DN) + apply PNF_existsOr + apply (PNF_allImpl DN) + apply PNF_existsImpl].
all: assert (forall ρ a b, (ρ ⊨ (a ↔ b)) <-> (ρ ⊨ a <-> ρ ⊨ b)) as eqEquiv by firstorder.
all: setoid_rewrite eqEquiv in IH1.
all: cbn in *; apply AllEquivAll + apply ExEquivEx.
all: rewrite <- quant_list_to_form_rename_free_up; cbn in *.
all: now intros d; rewrite <- IH1, shift_quant_1.
Qed.
Lemma PNF_equiv `{falsity_flag}:
DN -> forall f ρ, sat ρ (f ↔ (convert_PNF f)).
Proof.
intros DN f ρ.
induction f as [|b P v|b op ϕ1 IH1 ϕ2 IH2|b op ϕ IHϕ] in ρ |-*.
- easy.
- easy.
- eapply equivTrans. 2: apply (PNF_equiv_bin_op DN).
clear DN.
destruct op; cbn in *.
all: firstorder.
- unfold convert_PNF in *. cbn.
destruct op; firstorder.
Qed.
End PrenexNormalForm.
Lemma PNF_equiv_DN : (forall (D : Type) (Σ_preds : preds_signature) (Σ_funcs : funcs_signature) (i : interp D) (ff : falsity_flag),
forall (f : form) (ρ : env D), ρ ⊨ (f ↔ convert_PNF f)) -> DN.
Proof.
intros H P nnP.
specialize (H (option P) PA_preds_signature PA_funcs_signature).
pose ({|
i_func :=
fun (_tmp : PA_funcs_signature) (_ : vec (option P) (ar_syms _tmp)) =>
None;
i_atom :=
fun P0 : PA_preds_signature =>
match P0 as p return (vec (option P) (ar_preds p) -> Prop) with
| Eq =>
fun v : vec (option P) (ar_preds Eq) =>
Vector.hd v = Vector.hd (Vector.tl v)
end
|}) as i.
specialize (H i falsity_on (¬(∀ ($0 == $1))) (fun _ => None)). cbn in H.
destruct H as [[x H] _].
- intros A. apply nnP. intros p. specialize (A (Some p)) as [=].
- destruct x.
+ exact p.
+ contradiction.
Qed.