Require Import List Arith Lia.
Import ListNotations.
From Undecidability.HOU Require Import std.tactics std.lists.basics std.decidable.
Set Default Proof Using "Type".
Notation nth := nth_error.
Section Nth.
Variable (X Y: Type).
Lemma nth_error_map_option n (f: X -> Y) (A: list X):
nth_error (map f A) n = option_map f (nth_error A n).
Proof.
destruct (nth_error A n) eqn: H1.
+ eapply map_nth_error in H1. rewrite H1. reflexivity.
+ eapply nth_error_None in H1.
eapply nth_error_None. now rewrite map_length.
Qed.
Lemma nth_error_lt_Some Z m (L: list Z):
m < length L -> exists a, nth L m = Some a.
Proof.
intros H % nth_error_Some.
destruct nth; intuition. now (exists z).
Qed.
Lemma nth_error_Some_lt Z m a (L: list Z):
nth L m = Some a -> m < length L.
Proof.
intros H; eapply nth_error_Some; rewrite H; discriminate.
Qed.
End Nth.
Section Nats.
Fixpoint nats (n: nat) :=
match n with
| 0 => nil
| S n => 0 :: map S (nats n)
end.
Lemma nats_lt: forall k i, i ∈ nats k -> i < k.
Proof.
induction k; cbn; intuition. lia.
eapply in_map_iff in H0. destruct H0; intuition; subst.
specialize (IHk x H1); lia.
Qed.
Lemma nth_nats m k:
m < k -> nth (nats k) m = Some m.
Proof.
induction k in m |-*.
- lia.
- intros; destruct m; cbn in *; eauto.
erewrite map_nth_error; eauto.
eapply IHk; lia.
Qed.
Lemma lt_nats x k:
x < k -> x ∈ nats k.
Proof.
now intros H % nth_nats % nth_error_In.
Qed.
Lemma incl_nats I k:
I ⊆ nats k -> forall i, i ∈ I -> i < k.
Proof.
firstorder using nats_lt.
Qed.
Lemma nats_incl I k:
(forall i, i ∈ I -> i < k) -> I ⊆ nats k.
Proof.
firstorder using lt_nats.
Qed.
Lemma length_nats k: length (nats k) = k.
Proof.
induction k; cbn; lsimpl; congruence.
Qed.
End Nats.
Global Hint Rewrite length_nats : listdb.
Section Tabulate.
Implicit Type X: Type.
Fixpoint tab {X} (f: nat -> X) k :=
match k with
| 0 => nil
| S n => tab f n ++ [f n]
end.
Lemma tab_length X (f: nat -> X) k: length (tab f k) = k.
Proof.
induction k; cbn; lsimpl; cbn; lsimpl; lia.
Qed.
Lemma tab_map X Y (f: nat -> X) (g: X -> Y) k:
map g (tab f k) = tab (fun x => g (f x)) k.
Proof.
induction k; cbn; eauto; lsimpl; now rewrite IHk.
Qed.
Lemma tab_S X (f: nat -> X) n:
tab f (S n) = f 0 :: tab (fun k => f (S k)) n.
Proof.
induction n; cbn; eauto.
cbn in *; now rewrite IHn.
Qed.
Lemma tab_plus X (f: nat -> X) n m:
tab f (n + m) = tab f n ++ tab (fun k => f (n + k)) m.
Proof.
induction n in f |-*; eauto.
cbn [plus]; now rewrite tab_S, IHn, tab_S.
Qed.
Lemma tab_map_nats X k (f: nat -> X): tab f k = map f (nats k).
Proof.
induction k in f |-*; eauto.
cbn [nats map]; now rewrite tab_S, IHk, map_map.
Qed.
Lemma tab_id_nats k: tab id k = nats k.
Proof.
rewrite tab_map_nats; now lsimpl.
Qed.
Lemma tab_nth {X} n m (f: nat -> X):
n < m -> nth (tab f m) n = Some (f n).
Proof.
induction 1; cbn.
+ rewrite nth_error_app2, tab_length, Nat.sub_diag; cbn; eauto.
rewrite tab_length; eauto.
+ rewrite nth_error_app1; eauto.
now rewrite tab_length.
Qed.
Lemma tab_ext {X} (f g: nat -> X) n: (forall x, f x = g x) -> tab f n = tab g n.
Proof.
rewrite !tab_map_nats. intros; now apply map_ext.
Qed.
End Tabulate.
Global Hint Rewrite tab_length tab_id_nats : listdb.
Section Repeated.
Variable (X Y: Type).
Implicit Types (x y: X) (n m: nat) (f: X -> Y).
Lemma repeated_in x n y: y ∈ repeat x n -> x = y.
Proof.
induction n; cbn; firstorder.
Qed.
Lemma repeated_plus n m x:
repeat x (n + m) = repeat x n ++ repeat x m.
Proof.
induction n; cbn; congruence.
Qed.
Lemma repeated_rev n x: rev (repeat x n) = repeat x n.
Proof.
induction n; cbn; eauto.
rewrite IHn. change [x] with (repeat x 1).
rewrite <-repeated_plus.
rewrite plus_comm. reflexivity.
Qed.
Lemma repeated_map n x f:
map f (repeat x n) = repeat (f x) n.
Proof.
induction n; cbn; congruence.
Qed.
Lemma repeated_length n x: length (repeat x n) = n.
Proof.
induction n; cbn; congruence.
Qed.
Lemma repeated_equal n y A:
(forall x, x ∈ A -> x = y) -> length A = n -> repeat y n = A.
Proof.
induction A in n |-*; destruct n; cbn; eauto; try discriminate.
injection 2. rewrite IHA; eauto.
intros. erewrite <-H; intuition.
Qed.
Lemma repeated_incl x n A:
x ∈ A -> repeat x n ⊆ A.
Proof.
intros ? ? ? % repeated_in; subst; eauto.
Qed.
Lemma repeated_tab (x: X) n:
repeat x n = tab (Basics.const x) n.
Proof.
induction n; eauto; cbn [tab].
replace (S n) with (n + 1) by lia.
rewrite repeated_plus; cbn.
rewrite IHn; reflexivity.
Qed.
Lemma nth_error_repeated (x: X) n k :
k < n -> nth (repeat x n) k = Some x.
Proof.
intros H.
erewrite repeated_tab, tab_map_nats, map_nth_error; eauto.
now eapply nth_nats.
Qed.
Lemma repeated_app_inv n x A B:
repeat x n = A ++ B ->
n = length A + length B /\
A = repeat x (length A) /\
B = repeat x (length B).
Proof.
induction n in A, B |-*.
- cbn; destruct A, B; try discriminate. intuition.
- destruct A; cbn; try discriminate.
+ destruct B; try discriminate.
injection 1. intuition. cbn; now rewrite <-H0, repeated_length.
subst. cbn; now rewrite repeated_length.
+ injection 1; intros; edestruct IHn; eauto.
intuition. f_equal; eauto.
Qed.
End Repeated.
Global Hint Rewrite repeated_length repeated_map repeated_plus repeated_rev: listdb.
Section Select.
Context {X: Type}.
Fixpoint select (A: list nat) (B: list X) :=
match A with
| nil => nil
| i :: A => match nth B i with
| Some x => x :: select A B
| None => select A B
end
end.
Lemma select_nil I:
select I nil = nil.
Proof.
induction I; cbn.
- reflexivity.
- destruct nth eqn: H; eauto.
eapply nth_error_In in H; cbn in H; intuition.
Qed.
Lemma select_S I (x: X) A:
select (map S I) (x :: A) = select I A.
Proof.
induction I.
- reflexivity.
- cbn. rewrite IHI. reflexivity.
Qed.
Lemma select_nats k A:
select (nats k) A = firstn k A.
Proof.
induction k in A |-*.
- reflexivity.
- destruct A.
+ rewrite select_nil; reflexivity.
+ cbn. rewrite select_S, IHk. reflexivity.
Qed.
Lemma select_repeated n I x:
I ⊆ nats n -> select I (repeat x n) = repeat x (length I).
Proof.
induction I; cbn; eauto; intros.
rewrite IHI; eauto with listdb.
edestruct (nth_error_lt_Some) as [y H']; try rewrite H'.
eapply nats_lt; lsimpl; firstorder.
now eapply nth_error_In, repeated_in in H'; subst.
Qed.
Lemma select_incl I A: select I A ⊆ A.
Proof.
induction I; cbn; intuition.
destruct nth eqn: H1; intuition.
eapply nth_error_In in H1. intuition.
Qed.
Lemma incl_select A B: A ⊆ B -> exists I, I ⊆ nats (length B) /\ select I B = A.
Proof.
induction A.
+ exists nil. lauto.
+ intros; destruct IHA as [I []]; lauto. specialize (H a). mp H; lauto.
eapply In_nth_error in H as [i].
exists (i::I). cbn. rewrite H, H1. split; lauto.
eapply nth_error_Some_lt, lt_nats in H; lauto.
Qed.
End Select.
Lemma select_map X Y (f: X -> Y) I A:
map f (select I A) = select I (map f A).
Proof.
induction I in A |-*; cbn; eauto.
rewrite nth_error_map_option.
destruct nth; cbn; now rewrite IHI.
Qed.
Section Find.
Context {X: Type}.
Context {D: Dis X}.
Fixpoint find (x: X) (A: list X) : option nat :=
match A with
| nil => None
| y :: A => if x == y then Some 0 else option_map S (find x A)
end.
Lemma find_Some x A n:
find x A = Some n -> nth A n = Some x.
Proof.
induction A in n |-*; cbn.
- discriminate.
- destruct (x == a).
injection 1; intros; subst. reflexivity.
destruct find; try discriminate.
cbn; injection 1; intros; subst.
cbn. now rewrite IHA.
Qed.
Lemma find_in x A:
x ∈ A -> exists n, find x A = Some n.
Proof.
induction A; cbn; intuition.
- exists 0. destruct (x == a); subst; intuition.
- destruct (x == a).
+ subst; exists 0; intuition.
+ destruct H as [m]; exists (S m); intuition.
rewrite H; reflexivity.
Qed.
Lemma find_Some_nth x A n:
nth A n = Some x -> exists k, find x A = Some k.
Proof.
now intros ? % nth_error_In % find_in.
Qed.
Lemma find_not_in x A:
find x A = None -> ~ x ∈ A.
Proof.
intros H [n H'] % find_in; rewrite H in H'; discriminate.
Qed.
Lemma find_map f A n x:
find x A = Some n -> exists m, find (f x) (map f A) = Some m.
Proof.
induction A in n |-*; cbn; try discriminate.
destruct eq_dec; intuition; subst.
- exists 0; destruct eq_dec; intuition.
- destruct (find x A); try discriminate.
edestruct IHA as [m]; eauto.
destruct eq_dec; eauto.
exists (S m). now rewrite H0.
Qed.
End Find.
Lemma find_map_inv X Y {D1: Dis X} {D2: Dis Y} y (f: X -> Y) (A: list X) (n: nat):
find y (map f A) = Some n -> exists x, f x = y /\ find x A = Some n.
Proof.
induction A in y, n |-*; cbn; intuition; try discriminate.
destruct eq_dec.
+ injection H as ?; subst; exists a; intuition. destruct eq_dec; intuition.
+ destruct find eqn: H1; try discriminate. injection H as ?; subst.
eapply IHA in H1 as []; intuition; subst.
exists x. intuition; destruct eq_dec; cbn; try congruence. now rewrite H1.
Qed.
Section Remove.
Variable (X: Type) (D: Dis X).
Lemma remove_remain (x y: X) A:
x ∈ A -> x <> y -> x ∈ remove eq_dec y A.
Proof.
induction A; cbn; intuition; subst.
- destruct (y == x); subst; intuition.
- destruct (y == a); subst; intuition.
Qed.
Lemma remove_prev (x y: X) (A: list X):
y ∈ remove eq_dec x A -> y ∈ A.
Proof.
induction A; intuition.
cbn in H. destruct (x == a); subst; intuition.
cbn in *; intuition.
Qed.
End Remove.
Section FlatMap.
Variable (X Y: Type).
Implicit Types (A B: list X) (f: X -> list Y).
Lemma flat_map_app f A B:
flat_map f (A ++ B) = flat_map f A ++ flat_map f B.
Proof.
induction A; cbn; eauto; now rewrite IHA, app_assoc.
Qed.
Lemma flat_map_incl (f: X -> list Y) A B:
A ⊆ B -> flat_map f A ⊆ flat_map f B.
Proof.
intros H x [y []] % in_flat_map.
eapply in_flat_map; exists y; intuition.
Qed.
Lemma flat_map_in_incl f a A:
a ∈ A -> f a ⊆ flat_map f A.
Proof.
revert A; eapply in_ind; cbn; intuition.
Qed.
End FlatMap.
Import ListNotations.
From Undecidability.HOU Require Import std.tactics std.lists.basics std.decidable.
Set Default Proof Using "Type".
Notation nth := nth_error.
Section Nth.
Variable (X Y: Type).
Lemma nth_error_map_option n (f: X -> Y) (A: list X):
nth_error (map f A) n = option_map f (nth_error A n).
Proof.
destruct (nth_error A n) eqn: H1.
+ eapply map_nth_error in H1. rewrite H1. reflexivity.
+ eapply nth_error_None in H1.
eapply nth_error_None. now rewrite map_length.
Qed.
Lemma nth_error_lt_Some Z m (L: list Z):
m < length L -> exists a, nth L m = Some a.
Proof.
intros H % nth_error_Some.
destruct nth; intuition. now (exists z).
Qed.
Lemma nth_error_Some_lt Z m a (L: list Z):
nth L m = Some a -> m < length L.
Proof.
intros H; eapply nth_error_Some; rewrite H; discriminate.
Qed.
End Nth.
Section Nats.
Fixpoint nats (n: nat) :=
match n with
| 0 => nil
| S n => 0 :: map S (nats n)
end.
Lemma nats_lt: forall k i, i ∈ nats k -> i < k.
Proof.
induction k; cbn; intuition. lia.
eapply in_map_iff in H0. destruct H0; intuition; subst.
specialize (IHk x H1); lia.
Qed.
Lemma nth_nats m k:
m < k -> nth (nats k) m = Some m.
Proof.
induction k in m |-*.
- lia.
- intros; destruct m; cbn in *; eauto.
erewrite map_nth_error; eauto.
eapply IHk; lia.
Qed.
Lemma lt_nats x k:
x < k -> x ∈ nats k.
Proof.
now intros H % nth_nats % nth_error_In.
Qed.
Lemma incl_nats I k:
I ⊆ nats k -> forall i, i ∈ I -> i < k.
Proof.
firstorder using nats_lt.
Qed.
Lemma nats_incl I k:
(forall i, i ∈ I -> i < k) -> I ⊆ nats k.
Proof.
firstorder using lt_nats.
Qed.
Lemma length_nats k: length (nats k) = k.
Proof.
induction k; cbn; lsimpl; congruence.
Qed.
End Nats.
Global Hint Rewrite length_nats : listdb.
Section Tabulate.
Implicit Type X: Type.
Fixpoint tab {X} (f: nat -> X) k :=
match k with
| 0 => nil
| S n => tab f n ++ [f n]
end.
Lemma tab_length X (f: nat -> X) k: length (tab f k) = k.
Proof.
induction k; cbn; lsimpl; cbn; lsimpl; lia.
Qed.
Lemma tab_map X Y (f: nat -> X) (g: X -> Y) k:
map g (tab f k) = tab (fun x => g (f x)) k.
Proof.
induction k; cbn; eauto; lsimpl; now rewrite IHk.
Qed.
Lemma tab_S X (f: nat -> X) n:
tab f (S n) = f 0 :: tab (fun k => f (S k)) n.
Proof.
induction n; cbn; eauto.
cbn in *; now rewrite IHn.
Qed.
Lemma tab_plus X (f: nat -> X) n m:
tab f (n + m) = tab f n ++ tab (fun k => f (n + k)) m.
Proof.
induction n in f |-*; eauto.
cbn [plus]; now rewrite tab_S, IHn, tab_S.
Qed.
Lemma tab_map_nats X k (f: nat -> X): tab f k = map f (nats k).
Proof.
induction k in f |-*; eauto.
cbn [nats map]; now rewrite tab_S, IHk, map_map.
Qed.
Lemma tab_id_nats k: tab id k = nats k.
Proof.
rewrite tab_map_nats; now lsimpl.
Qed.
Lemma tab_nth {X} n m (f: nat -> X):
n < m -> nth (tab f m) n = Some (f n).
Proof.
induction 1; cbn.
+ rewrite nth_error_app2, tab_length, Nat.sub_diag; cbn; eauto.
rewrite tab_length; eauto.
+ rewrite nth_error_app1; eauto.
now rewrite tab_length.
Qed.
Lemma tab_ext {X} (f g: nat -> X) n: (forall x, f x = g x) -> tab f n = tab g n.
Proof.
rewrite !tab_map_nats. intros; now apply map_ext.
Qed.
End Tabulate.
Global Hint Rewrite tab_length tab_id_nats : listdb.
Section Repeated.
Variable (X Y: Type).
Implicit Types (x y: X) (n m: nat) (f: X -> Y).
Lemma repeated_in x n y: y ∈ repeat x n -> x = y.
Proof.
induction n; cbn; firstorder.
Qed.
Lemma repeated_plus n m x:
repeat x (n + m) = repeat x n ++ repeat x m.
Proof.
induction n; cbn; congruence.
Qed.
Lemma repeated_rev n x: rev (repeat x n) = repeat x n.
Proof.
induction n; cbn; eauto.
rewrite IHn. change [x] with (repeat x 1).
rewrite <-repeated_plus.
rewrite plus_comm. reflexivity.
Qed.
Lemma repeated_map n x f:
map f (repeat x n) = repeat (f x) n.
Proof.
induction n; cbn; congruence.
Qed.
Lemma repeated_length n x: length (repeat x n) = n.
Proof.
induction n; cbn; congruence.
Qed.
Lemma repeated_equal n y A:
(forall x, x ∈ A -> x = y) -> length A = n -> repeat y n = A.
Proof.
induction A in n |-*; destruct n; cbn; eauto; try discriminate.
injection 2. rewrite IHA; eauto.
intros. erewrite <-H; intuition.
Qed.
Lemma repeated_incl x n A:
x ∈ A -> repeat x n ⊆ A.
Proof.
intros ? ? ? % repeated_in; subst; eauto.
Qed.
Lemma repeated_tab (x: X) n:
repeat x n = tab (Basics.const x) n.
Proof.
induction n; eauto; cbn [tab].
replace (S n) with (n + 1) by lia.
rewrite repeated_plus; cbn.
rewrite IHn; reflexivity.
Qed.
Lemma nth_error_repeated (x: X) n k :
k < n -> nth (repeat x n) k = Some x.
Proof.
intros H.
erewrite repeated_tab, tab_map_nats, map_nth_error; eauto.
now eapply nth_nats.
Qed.
Lemma repeated_app_inv n x A B:
repeat x n = A ++ B ->
n = length A + length B /\
A = repeat x (length A) /\
B = repeat x (length B).
Proof.
induction n in A, B |-*.
- cbn; destruct A, B; try discriminate. intuition.
- destruct A; cbn; try discriminate.
+ destruct B; try discriminate.
injection 1. intuition. cbn; now rewrite <-H0, repeated_length.
subst. cbn; now rewrite repeated_length.
+ injection 1; intros; edestruct IHn; eauto.
intuition. f_equal; eauto.
Qed.
End Repeated.
Global Hint Rewrite repeated_length repeated_map repeated_plus repeated_rev: listdb.
Section Select.
Context {X: Type}.
Fixpoint select (A: list nat) (B: list X) :=
match A with
| nil => nil
| i :: A => match nth B i with
| Some x => x :: select A B
| None => select A B
end
end.
Lemma select_nil I:
select I nil = nil.
Proof.
induction I; cbn.
- reflexivity.
- destruct nth eqn: H; eauto.
eapply nth_error_In in H; cbn in H; intuition.
Qed.
Lemma select_S I (x: X) A:
select (map S I) (x :: A) = select I A.
Proof.
induction I.
- reflexivity.
- cbn. rewrite IHI. reflexivity.
Qed.
Lemma select_nats k A:
select (nats k) A = firstn k A.
Proof.
induction k in A |-*.
- reflexivity.
- destruct A.
+ rewrite select_nil; reflexivity.
+ cbn. rewrite select_S, IHk. reflexivity.
Qed.
Lemma select_repeated n I x:
I ⊆ nats n -> select I (repeat x n) = repeat x (length I).
Proof.
induction I; cbn; eauto; intros.
rewrite IHI; eauto with listdb.
edestruct (nth_error_lt_Some) as [y H']; try rewrite H'.
eapply nats_lt; lsimpl; firstorder.
now eapply nth_error_In, repeated_in in H'; subst.
Qed.
Lemma select_incl I A: select I A ⊆ A.
Proof.
induction I; cbn; intuition.
destruct nth eqn: H1; intuition.
eapply nth_error_In in H1. intuition.
Qed.
Lemma incl_select A B: A ⊆ B -> exists I, I ⊆ nats (length B) /\ select I B = A.
Proof.
induction A.
+ exists nil. lauto.
+ intros; destruct IHA as [I []]; lauto. specialize (H a). mp H; lauto.
eapply In_nth_error in H as [i].
exists (i::I). cbn. rewrite H, H1. split; lauto.
eapply nth_error_Some_lt, lt_nats in H; lauto.
Qed.
End Select.
Lemma select_map X Y (f: X -> Y) I A:
map f (select I A) = select I (map f A).
Proof.
induction I in A |-*; cbn; eauto.
rewrite nth_error_map_option.
destruct nth; cbn; now rewrite IHI.
Qed.
Section Find.
Context {X: Type}.
Context {D: Dis X}.
Fixpoint find (x: X) (A: list X) : option nat :=
match A with
| nil => None
| y :: A => if x == y then Some 0 else option_map S (find x A)
end.
Lemma find_Some x A n:
find x A = Some n -> nth A n = Some x.
Proof.
induction A in n |-*; cbn.
- discriminate.
- destruct (x == a).
injection 1; intros; subst. reflexivity.
destruct find; try discriminate.
cbn; injection 1; intros; subst.
cbn. now rewrite IHA.
Qed.
Lemma find_in x A:
x ∈ A -> exists n, find x A = Some n.
Proof.
induction A; cbn; intuition.
- exists 0. destruct (x == a); subst; intuition.
- destruct (x == a).
+ subst; exists 0; intuition.
+ destruct H as [m]; exists (S m); intuition.
rewrite H; reflexivity.
Qed.
Lemma find_Some_nth x A n:
nth A n = Some x -> exists k, find x A = Some k.
Proof.
now intros ? % nth_error_In % find_in.
Qed.
Lemma find_not_in x A:
find x A = None -> ~ x ∈ A.
Proof.
intros H [n H'] % find_in; rewrite H in H'; discriminate.
Qed.
Lemma find_map f A n x:
find x A = Some n -> exists m, find (f x) (map f A) = Some m.
Proof.
induction A in n |-*; cbn; try discriminate.
destruct eq_dec; intuition; subst.
- exists 0; destruct eq_dec; intuition.
- destruct (find x A); try discriminate.
edestruct IHA as [m]; eauto.
destruct eq_dec; eauto.
exists (S m). now rewrite H0.
Qed.
End Find.
Lemma find_map_inv X Y {D1: Dis X} {D2: Dis Y} y (f: X -> Y) (A: list X) (n: nat):
find y (map f A) = Some n -> exists x, f x = y /\ find x A = Some n.
Proof.
induction A in y, n |-*; cbn; intuition; try discriminate.
destruct eq_dec.
+ injection H as ?; subst; exists a; intuition. destruct eq_dec; intuition.
+ destruct find eqn: H1; try discriminate. injection H as ?; subst.
eapply IHA in H1 as []; intuition; subst.
exists x. intuition; destruct eq_dec; cbn; try congruence. now rewrite H1.
Qed.
Section Remove.
Variable (X: Type) (D: Dis X).
Lemma remove_remain (x y: X) A:
x ∈ A -> x <> y -> x ∈ remove eq_dec y A.
Proof.
induction A; cbn; intuition; subst.
- destruct (y == x); subst; intuition.
- destruct (y == a); subst; intuition.
Qed.
Lemma remove_prev (x y: X) (A: list X):
y ∈ remove eq_dec x A -> y ∈ A.
Proof.
induction A; intuition.
cbn in H. destruct (x == a); subst; intuition.
cbn in *; intuition.
Qed.
End Remove.
Section FlatMap.
Variable (X Y: Type).
Implicit Types (A B: list X) (f: X -> list Y).
Lemma flat_map_app f A B:
flat_map f (A ++ B) = flat_map f A ++ flat_map f B.
Proof.
induction A; cbn; eauto; now rewrite IHA, app_assoc.
Qed.
Lemma flat_map_incl (f: X -> list Y) A B:
A ⊆ B -> flat_map f A ⊆ flat_map f B.
Proof.
intros H x [y []] % in_flat_map.
eapply in_flat_map; exists y; intuition.
Qed.
Lemma flat_map_in_incl f a A:
a ∈ A -> f a ⊆ flat_map f A.
Proof.
revert A; eapply in_ind; cbn; intuition.
Qed.
End FlatMap.