Set Implicit Arguments.
Require Import Lia List.
From Undecidability.HOU Require Import std.lists.basics std.misc std.enumerable std.decidable.
Import ListNotations.
Set Default Proof Using "Type".
Section Reductions.
Variable (X Y Z: Type).
Implicit Types (P: X -> Prop) (Q: Y -> Prop) (R: Z -> Prop).
Definition Neg {X} (P: X -> Prop) (x: X) := ~ P x.
Definition reduction {X Y: Type} (P: X -> Prop) (Q: Y -> Prop) :=
exists f, forall x, P x <-> Q (f x).
Notation "P ⪯ Q" := (reduction P Q) (at level 60).
Lemma reduction_transitive P Q R:
P ⪯ Q -> Q ⪯ R -> P ⪯ R.
Proof.
intros [f H1] [g H2]; exists (f >> g).
intros x; rewrite H1, H2. reflexivity.
Qed.
Lemma reduction_reflexive P: P ⪯ P.
Proof.
exists id; reflexivity.
Qed.
Lemma reduction_neg P Q: P ⪯ Q -> Neg P ⪯ Neg Q.
Proof.
intros [f H]; exists f; unfold Neg; firstorder.
Qed.
End Reductions.
#[export] Hint Resolve reduction_reflexive reduction_transitive : core.
Notation "P ⪯ Q" := (reduction P Q) (at level 60).
Section enum_red.
Variables (X Y : Type) (p : X -> Prop) (q : Y -> Prop).
Variables (f : X -> Y) (Hf : forall x, p x <-> q (f x)).
Variables (Lq : _) (qe : enum q Lq).
Variables (x0 : X).
Variables (d : Dis Y).
Fixpoint L (LX : enumT X) n :=
match n with
| 0 => []
| S n => L LX n ++ [ x | x ∈ L_T X n, (f x ∈ Lq n) ]
end.
Lemma enum_red LX :
enum p (L LX).
Proof using qe q Hf.
split.
- intros ?. cbn; eauto.
- split.
+ intros H.
eapply Hf in H. eapply qe in H as [m1]. destruct (el_T x) as [m2 ?].
exists (1 + m1 + m2). cbn. in_app 2.
in_collect x; [|eapply dec_decb]; eapply cum_ge'; eauto; try lia.
eapply qe.
+ intros [m H]. induction m.
* inversion H.
* cbn in H. inv_collect.
eapply Hf. eapply qe. eapply decb_dec in H. eauto.
Qed.
End enum_red.
Lemma enumerable_red X Y (p : X -> Prop) (q : Y -> Prop) :
p ⪯ q -> enumerable__T X -> Dis Y -> enumerable q -> enumerable p.
Proof.
intros [f] H' d [L' H1] % enumerable_enum;
eapply enum_enumT in H'; destruct H' as [H'].
eapply enumerable_enum; exists (L f L' d H'). eapply enum_red; eauto.
Qed.
Section enum_red2.
Variables (X Y Z : Type) (p : X -> Prop) (q : Y -> Prop).
Variables (f : X -> Y) (Hf : forall x, p x <-> q (f x)).
Variables (g: Y -> Z) (Hg: forall y1 y2, g y1 = g y2 -> q y1 <-> q y2).
Variables (Lq : _) (qe : enum q Lq).
Variables (d : Dis Z).
Variable (LX: enumT X).
Fixpoint Lalt n :=
match n with
| 0 => []
| S n => Lalt n ++ [ x | x ∈ L_T X n, (g (f x) ∈ map g (Lq n)) ]
end.
Lemma enum_red2:
enum p Lalt.
Proof using qe q Hg Hf.
split; eauto.
split.
- intros H. eapply Hf in H. eapply qe in H as [m1]. destruct (el_T x) as [m2 ?].
exists (1 + m1 + m2). cbn. in_app 2.
in_collect x; [|eapply dec_decb]. eapply cum_ge'; eauto; try lia.
eapply in_map, cum_ge'; eauto; try lia. eapply qe.
- intros [m H]. induction m.
+ inversion H.
+ cbn in H. inv_collect. eapply decb_dec in H.
inv_collect. eapply Hf, (Hg H), qe; eauto.
Qed.
End enum_red2.
Lemma enumerable_red2 X Y Z (g: Y -> Z) (p : X -> Prop) (q : Y -> Prop) :
p ⪯ q -> enumerable__T X -> Dis Z -> (forall y1 y2, g y1 = g y2 -> q y1 <-> q y2) -> enumerable q -> enumerable p.
Proof.
intros [f] H' d H1 [L' H2] % enumerable_enum;
eapply enum_enumT in H'; destruct H' as [H'].
eapply enumerable_enum; exists (Lalt f g L' d H'). eapply enum_red2; eauto.
Qed.
Require Import Lia List.
From Undecidability.HOU Require Import std.lists.basics std.misc std.enumerable std.decidable.
Import ListNotations.
Set Default Proof Using "Type".
Section Reductions.
Variable (X Y Z: Type).
Implicit Types (P: X -> Prop) (Q: Y -> Prop) (R: Z -> Prop).
Definition Neg {X} (P: X -> Prop) (x: X) := ~ P x.
Definition reduction {X Y: Type} (P: X -> Prop) (Q: Y -> Prop) :=
exists f, forall x, P x <-> Q (f x).
Notation "P ⪯ Q" := (reduction P Q) (at level 60).
Lemma reduction_transitive P Q R:
P ⪯ Q -> Q ⪯ R -> P ⪯ R.
Proof.
intros [f H1] [g H2]; exists (f >> g).
intros x; rewrite H1, H2. reflexivity.
Qed.
Lemma reduction_reflexive P: P ⪯ P.
Proof.
exists id; reflexivity.
Qed.
Lemma reduction_neg P Q: P ⪯ Q -> Neg P ⪯ Neg Q.
Proof.
intros [f H]; exists f; unfold Neg; firstorder.
Qed.
End Reductions.
#[export] Hint Resolve reduction_reflexive reduction_transitive : core.
Notation "P ⪯ Q" := (reduction P Q) (at level 60).
Section enum_red.
Variables (X Y : Type) (p : X -> Prop) (q : Y -> Prop).
Variables (f : X -> Y) (Hf : forall x, p x <-> q (f x)).
Variables (Lq : _) (qe : enum q Lq).
Variables (x0 : X).
Variables (d : Dis Y).
Fixpoint L (LX : enumT X) n :=
match n with
| 0 => []
| S n => L LX n ++ [ x | x ∈ L_T X n, (f x ∈ Lq n) ]
end.
Lemma enum_red LX :
enum p (L LX).
Proof using qe q Hf.
split.
- intros ?. cbn; eauto.
- split.
+ intros H.
eapply Hf in H. eapply qe in H as [m1]. destruct (el_T x) as [m2 ?].
exists (1 + m1 + m2). cbn. in_app 2.
in_collect x; [|eapply dec_decb]; eapply cum_ge'; eauto; try lia.
eapply qe.
+ intros [m H]. induction m.
* inversion H.
* cbn in H. inv_collect.
eapply Hf. eapply qe. eapply decb_dec in H. eauto.
Qed.
End enum_red.
Lemma enumerable_red X Y (p : X -> Prop) (q : Y -> Prop) :
p ⪯ q -> enumerable__T X -> Dis Y -> enumerable q -> enumerable p.
Proof.
intros [f] H' d [L' H1] % enumerable_enum;
eapply enum_enumT in H'; destruct H' as [H'].
eapply enumerable_enum; exists (L f L' d H'). eapply enum_red; eauto.
Qed.
Section enum_red2.
Variables (X Y Z : Type) (p : X -> Prop) (q : Y -> Prop).
Variables (f : X -> Y) (Hf : forall x, p x <-> q (f x)).
Variables (g: Y -> Z) (Hg: forall y1 y2, g y1 = g y2 -> q y1 <-> q y2).
Variables (Lq : _) (qe : enum q Lq).
Variables (d : Dis Z).
Variable (LX: enumT X).
Fixpoint Lalt n :=
match n with
| 0 => []
| S n => Lalt n ++ [ x | x ∈ L_T X n, (g (f x) ∈ map g (Lq n)) ]
end.
Lemma enum_red2:
enum p Lalt.
Proof using qe q Hg Hf.
split; eauto.
split.
- intros H. eapply Hf in H. eapply qe in H as [m1]. destruct (el_T x) as [m2 ?].
exists (1 + m1 + m2). cbn. in_app 2.
in_collect x; [|eapply dec_decb]. eapply cum_ge'; eauto; try lia.
eapply in_map, cum_ge'; eauto; try lia. eapply qe.
- intros [m H]. induction m.
+ inversion H.
+ cbn in H. inv_collect. eapply decb_dec in H.
inv_collect. eapply Hf, (Hg H), qe; eauto.
Qed.
End enum_red2.
Lemma enumerable_red2 X Y Z (g: Y -> Z) (p : X -> Prop) (q : Y -> Prop) :
p ⪯ q -> enumerable__T X -> Dis Z -> (forall y1 y2, g y1 = g y2 -> q y1 <-> q y2) -> enumerable q -> enumerable p.
Proof.
intros [f] H' d H1 [L' H2] % enumerable_enum;
eapply enum_enumT in H'; destruct H' as [H'].
eapply enumerable_enum; exists (Lalt f g L' d H'). eapply enum_red2; eauto.
Qed.