From Undecidability.L Require Export Functions.Subst Computability.Seval Computability.MuRec Datatypes.LOptions Datatypes.LTerm.
#[global]
Instance term_eva : computable eva.
Proof.
extract.
Qed.
Definition doesHaltIn := fun u n => match eva n u with None => false | _ => true end.
#[global]
Instance term_doesHaltIn : computable doesHaltIn.
Proof.
extract.
Qed.
Section hoas. Import HOAS_Notations.
Definition Eval :term := Eval cbn in
convert(λ u, !!(ext eva)
(!!mu (λ n, !!(ext doesHaltIn) u n)) u !!I !!I).
End hoas.
Import L_Notations.
Lemma Eval_correct (s v:term) : lambda v -> (Eval (ext s) == v <-> exists (n:nat) (v':term), (ext eva) (ext n) (ext s) == ext (Some v') /\ v = ext v' /\ lambda v').
Proof.
intros lv. unfold Eval. split.
-intros H. LsimplHypo. evar (c:term).
assert (C:converges c). exists v. split. exact H. Lproc. subst c. apply app_converges in C as [C _].
apply app_converges in C as [C _]. apply app_converges in C as [C _]. apply app_converges in C as [_ C].
destruct C as [w [R lw]].
rewrite R in H.
apply mu_sound in R as [n [ eq [R _]]];try Lproc.
+subst w. LsimplHypo. Lrewrite in H. Lrewrite in R. apply enc_extinj in R. unfold doesHaltIn in R. destruct (eva n) eqn:eq.
*exists n,t. split. Lsimpl. now rewrite eq. split. apply unique_normal_forms;[Lproc..|].
rewrite <- H. unfold I. clear H. now Lsimpl. eapply eva_lam. eauto.
*congruence.
+intros. eexists. Lsimpl. reflexivity.
-intros [n [v' [H [eq lv']]]]. subst v. Lrewrite in H. Lsimpl.
apply enc_extinj in H. destruct mu_complete with (P:=(lam ((ext doesHaltIn) (ext s) 0))) (n:=n);try Lproc.
+intros n0. destruct (eva n0 s) eqn:eq;eexists; Lsimpl;reflexivity.
+ Lsimpl. unfold doesHaltIn. rewrite H. reflexivity.
+rewrite H0. Lsimpl. apply mu_sound in H0. 2,4:Lproc.
* destruct H0 as [n' [eq [R _]]]. apply inj_enc in eq. subst. LsimplHypo.
Lrewrite in R. apply enc_extinj in R. unfold doesHaltIn in R. destruct (eva n' s) eqn:eq. 2:congruence.
Lsimpl. apply eva_equiv in H. assert (lambda t) by now apply eva_lam in eq. apply eva_equiv in eq. rewrite H in eq. unfold I.
apply unique_normal_forms in eq;[|Lproc..]. subst. reflexivity.
*intros n0. eexists; Lsimpl. reflexivity.
Qed.
Lemma seval_Eval n (s t:term): seval n s t -> Eval (ext s) == (ext t).
Proof.
intros. apply seval_eva in H.
rewrite Eval_correct;try Lproc. exists n,t. repeat split.
-Lsimpl. rewrite H. reflexivity.
-apply eva_lam in H. Lproc.
Qed.
Lemma eval_Eval s t : eval s t -> Eval (ext s) == (ext t).
Proof.
intros H. eapply eval_seval in H. destruct H. eapply seval_Eval. eassumption.
Qed.
Lemma Eval_eval (s t : term) : lambda t -> Eval (ext s) == t -> exists t', ext t' = t /\ eval s t'.
Proof with Lproc.
intros p H. rewrite Eval_correct in H;try Lproc. destruct H as [n [v [R [eq lv]]]]. subst t.
eexists. split. reflexivity. Lrewrite in R. apply enc_extinj in R. apply eva_equiv in R. split. apply equiv_lambda;try Lproc. assumption. assumption.
Qed.
Lemma eval_converges s : converges s -> exists t, eval s t.
Proof.
intros [x [R ?]]. exists x. eauto using equiv_lambda.
Qed.
Lemma Eval_converges s : converges s <-> converges (Eval (ext s)).
Proof with eauto.
split; intros H.
- destruct (eval_converges H) as [t Ht].
pose proof (eval_Eval Ht) as He.
rewrite He. eexists;split;[reflexivity|Lproc].
- destruct H as [x [H l]]. apply Eval_eval in H;try Lproc. destruct H as [t' [? t]]. exists t'. destruct t. split. now rewrite H0. auto.
Qed.
#[global]
Instance term_eva : computable eva.
Proof.
extract.
Qed.
Definition doesHaltIn := fun u n => match eva n u with None => false | _ => true end.
#[global]
Instance term_doesHaltIn : computable doesHaltIn.
Proof.
extract.
Qed.
Section hoas. Import HOAS_Notations.
Definition Eval :term := Eval cbn in
convert(λ u, !!(ext eva)
(!!mu (λ n, !!(ext doesHaltIn) u n)) u !!I !!I).
End hoas.
Import L_Notations.
Lemma Eval_correct (s v:term) : lambda v -> (Eval (ext s) == v <-> exists (n:nat) (v':term), (ext eva) (ext n) (ext s) == ext (Some v') /\ v = ext v' /\ lambda v').
Proof.
intros lv. unfold Eval. split.
-intros H. LsimplHypo. evar (c:term).
assert (C:converges c). exists v. split. exact H. Lproc. subst c. apply app_converges in C as [C _].
apply app_converges in C as [C _]. apply app_converges in C as [C _]. apply app_converges in C as [_ C].
destruct C as [w [R lw]].
rewrite R in H.
apply mu_sound in R as [n [ eq [R _]]];try Lproc.
+subst w. LsimplHypo. Lrewrite in H. Lrewrite in R. apply enc_extinj in R. unfold doesHaltIn in R. destruct (eva n) eqn:eq.
*exists n,t. split. Lsimpl. now rewrite eq. split. apply unique_normal_forms;[Lproc..|].
rewrite <- H. unfold I. clear H. now Lsimpl. eapply eva_lam. eauto.
*congruence.
+intros. eexists. Lsimpl. reflexivity.
-intros [n [v' [H [eq lv']]]]. subst v. Lrewrite in H. Lsimpl.
apply enc_extinj in H. destruct mu_complete with (P:=(lam ((ext doesHaltIn) (ext s) 0))) (n:=n);try Lproc.
+intros n0. destruct (eva n0 s) eqn:eq;eexists; Lsimpl;reflexivity.
+ Lsimpl. unfold doesHaltIn. rewrite H. reflexivity.
+rewrite H0. Lsimpl. apply mu_sound in H0. 2,4:Lproc.
* destruct H0 as [n' [eq [R _]]]. apply inj_enc in eq. subst. LsimplHypo.
Lrewrite in R. apply enc_extinj in R. unfold doesHaltIn in R. destruct (eva n' s) eqn:eq. 2:congruence.
Lsimpl. apply eva_equiv in H. assert (lambda t) by now apply eva_lam in eq. apply eva_equiv in eq. rewrite H in eq. unfold I.
apply unique_normal_forms in eq;[|Lproc..]. subst. reflexivity.
*intros n0. eexists; Lsimpl. reflexivity.
Qed.
Lemma seval_Eval n (s t:term): seval n s t -> Eval (ext s) == (ext t).
Proof.
intros. apply seval_eva in H.
rewrite Eval_correct;try Lproc. exists n,t. repeat split.
-Lsimpl. rewrite H. reflexivity.
-apply eva_lam in H. Lproc.
Qed.
Lemma eval_Eval s t : eval s t -> Eval (ext s) == (ext t).
Proof.
intros H. eapply eval_seval in H. destruct H. eapply seval_Eval. eassumption.
Qed.
Lemma Eval_eval (s t : term) : lambda t -> Eval (ext s) == t -> exists t', ext t' = t /\ eval s t'.
Proof with Lproc.
intros p H. rewrite Eval_correct in H;try Lproc. destruct H as [n [v [R [eq lv]]]]. subst t.
eexists. split. reflexivity. Lrewrite in R. apply enc_extinj in R. apply eva_equiv in R. split. apply equiv_lambda;try Lproc. assumption. assumption.
Qed.
Lemma eval_converges s : converges s -> exists t, eval s t.
Proof.
intros [x [R ?]]. exists x. eauto using equiv_lambda.
Qed.
Lemma Eval_converges s : converges s <-> converges (Eval (ext s)).
Proof with eauto.
split; intros H.
- destruct (eval_converges H) as [t Ht].
pose proof (eval_Eval Ht) as He.
rewrite He. eexists;split;[reflexivity|Lproc].
- destruct H as [x [H l]]. apply Eval_eval in H;try Lproc. destruct H as [t' [? t]]. exists t'. destruct t. split. now rewrite H0. auto.
Qed.