From Undecidability.L Require Import Tactics.LTactics Functions.Encoding Prelim.LoopSum Functions.LoopSum Functions.UnboundIteration.
Require Import Nat.
From Undecidability.L.Datatypes Require Import LTerm LProd.
From Undecidability.L.Datatypes Require Import Lists.
Lemma size'_surj : surjective size'.
Proof.
intros n. induction n.
-exists (var 0). cbn. lia.
-destruct IHn as [x <-].
exists (lam x). cbn. easy.
Qed.
Import Util.L_facts.
Definition sizeTR' '(stack,res) : (list term * nat) + nat :=
match stack with
[] => inr res
| s::stack =>
match s with
var n => inl (stack,S (n + res))
| app s t => inl (s::t::stack,S res)
| lam s => inl (s::stack,S res)
end
end.
Fixpoint sizeTR'_fuel (s:term) : nat :=
match s with
var _ => 1
| app s t => 1 + (sizeTR'_fuel s + sizeTR'_fuel t)
| lam s => 1 + sizeTR'_fuel s
end.
Lemma sizeTR'_correct stack res s k:
loopSum (sizeTR'_fuel s + k) sizeTR' (s::stack,res)
= loopSum k sizeTR' (stack,size s + res).
Proof.
induction s in res,stack,k |- *.
all:cbn.
-reflexivity.
-rewrite <- !Nat.add_assoc. cbn.
rewrite IHs1, IHs2. easy.
-rewrite IHs. easy.
Qed.
Lemma sizeTR_correct s:
loopSum (sizeTR'_fuel s + 1) sizeTR' ([s],0) = Some (size s).
Proof.
rewrite sizeTR'_correct. cbn. easy.
Qed.
#[global]
Instance termT_sizeTR' : computableTime' sizeTR'
(fun x _ => (let '(stack,res) := x in
match stack with
var n ::_ => n*11
| _ => 0
end + 35,tt)).
Proof.
extract. solverec. unfold LNat.c__add1, LNat.add_time, LNat.c__add. nia.
Qed.
Lemma sizeTR'_fuel_leq_size s : sizeTR'_fuel s <= size s.
Proof.
induction s;cbn [size sizeTR'_fuel];try Lia.lia.
Qed.
Global
Instance termT_size : computableTime' size (fun s _ => (108 * size s + 50,tt)).
Proof.
eexists.
eapply computesTime_timeLeq.
2:{ unshelve (eapply uiter_total_instanceTime with (1 := sizeTR_correct) (preprocessT:=(fun _ _ => (5,tt)))).
extract. solverec.
}
split. 2:exact Logic.I.
cbn [fst].
erewrite uiterTime_bound_recRel with (iterT := fun _ '(stack,res) => ((sumn (map size stack)) * 108
+ 35 + 9))
(P:= fun n x => True).
{ cbn [length map sumn]. Lia.lia. }
{intros n [stack res] H. cbn.
destruct stack as [|[[]| |]].
2-5:split;[easy|].
all:cbn [length map sumn sizeTR'_fuel size];try Lia.lia.
}
all:easy.
Qed.
Require Import Nat.
From Undecidability.L.Datatypes Require Import LTerm LProd.
From Undecidability.L.Datatypes Require Import Lists.
Lemma size'_surj : surjective size'.
Proof.
intros n. induction n.
-exists (var 0). cbn. lia.
-destruct IHn as [x <-].
exists (lam x). cbn. easy.
Qed.
Import Util.L_facts.
Definition sizeTR' '(stack,res) : (list term * nat) + nat :=
match stack with
[] => inr res
| s::stack =>
match s with
var n => inl (stack,S (n + res))
| app s t => inl (s::t::stack,S res)
| lam s => inl (s::stack,S res)
end
end.
Fixpoint sizeTR'_fuel (s:term) : nat :=
match s with
var _ => 1
| app s t => 1 + (sizeTR'_fuel s + sizeTR'_fuel t)
| lam s => 1 + sizeTR'_fuel s
end.
Lemma sizeTR'_correct stack res s k:
loopSum (sizeTR'_fuel s + k) sizeTR' (s::stack,res)
= loopSum k sizeTR' (stack,size s + res).
Proof.
induction s in res,stack,k |- *.
all:cbn.
-reflexivity.
-rewrite <- !Nat.add_assoc. cbn.
rewrite IHs1, IHs2. easy.
-rewrite IHs. easy.
Qed.
Lemma sizeTR_correct s:
loopSum (sizeTR'_fuel s + 1) sizeTR' ([s],0) = Some (size s).
Proof.
rewrite sizeTR'_correct. cbn. easy.
Qed.
#[global]
Instance termT_sizeTR' : computableTime' sizeTR'
(fun x _ => (let '(stack,res) := x in
match stack with
var n ::_ => n*11
| _ => 0
end + 35,tt)).
Proof.
extract. solverec. unfold LNat.c__add1, LNat.add_time, LNat.c__add. nia.
Qed.
Lemma sizeTR'_fuel_leq_size s : sizeTR'_fuel s <= size s.
Proof.
induction s;cbn [size sizeTR'_fuel];try Lia.lia.
Qed.
Global
Instance termT_size : computableTime' size (fun s _ => (108 * size s + 50,tt)).
Proof.
eexists.
eapply computesTime_timeLeq.
2:{ unshelve (eapply uiter_total_instanceTime with (1 := sizeTR_correct) (preprocessT:=(fun _ _ => (5,tt)))).
extract. solverec.
}
split. 2:exact Logic.I.
cbn [fst].
erewrite uiterTime_bound_recRel with (iterT := fun _ '(stack,res) => ((sumn (map size stack)) * 108
+ 35 + 9))
(P:= fun n x => True).
{ cbn [length map sumn]. Lia.lia. }
{intros n [stack res] H. cbn.
destruct stack as [|[[]| |]].
2-5:split;[easy|].
all:cbn [length map sumn sizeTR'_fuel size];try Lia.lia.
}
all:easy.
Qed.