Require Import List.
From Undecidability.Shared.Libs.DLW
Require Import utils.
Require Import Undecidability.Synthetic.Undecidability.
Require Import Undecidability.Synthetic.ReducibilityFacts.
Require Import Undecidability.TM.TM.
From Undecidability.StringRewriting
Require Import SR.
From Undecidability.PCP
Require Import PCP.
From Undecidability.TM
Require Import SBTM.
From Undecidability.TM.Reductions
Require HaltTM_1_to_SBTM_HALT.
From Undecidability.StringRewriting.Reductions
Require SBTM_HALT_to_SR.
From Undecidability.PCP.Reductions
Require SR_to_MPCP MPCP_to_PCP PCP_to_PCPb PCPb_iff_iPCPb.
Import ReductionChainNotations UndecidabilityNotations.
Lemma HaltTM_1_chain_iPCPb :
⎩ HaltTM 1 ⪯ₘ SBTM_HALT ⪯ₘ SR ⪯ₘ MPCP ⪯ₘ PCP ⪯ₘ PCPb ⪯ₘ iPCPb ⎭.
Proof.
msplit 5.
+ apply HaltTM_1_to_SBTM_HALT.reduction.
+ apply SBTM_HALT_to_SR.reduction.
+ apply SR_to_MPCP.reduction.
+ apply MPCP_to_PCP.reduction.
+ apply PCP_to_PCPb.reduction.
+ apply PCPb_iff_iPCPb.reductionLR.
Qed.
Lemma HaltTM_1_to_PCP : HaltTM 1 ⪯ PCP. Proof. reduce with chain HaltTM_1_chain_iPCPb. Qed.
Lemma HaltTM_1_to_PCPb : HaltTM 1 ⪯ PCPb. Proof. reduce with chain HaltTM_1_chain_iPCPb. Qed.
Lemma HaltTM_1_to_iPCPb : HaltTM 1 ⪯ iPCPb. Proof. reduce with chain HaltTM_1_chain_iPCPb. Qed.
Lemma PCP_chain_iPCPb : ⎩PCP ⪯ₘ PCPb ⪯ₘ iPCPb⎭. Proof. split; apply HaltTM_1_chain_iPCPb. Qed.
Lemma PCP_chain_PCPb : ⎩PCP ⪯ₘ PCPb⎭. Proof. apply PCP_chain_iPCPb. Qed.
Lemma PCPb_chain_iPCPb : ⎩PCPb ⪯ₘiPCPb⎭. Proof. apply PCP_chain_iPCPb. Qed.