Require Import List.
Import ListNotations.
Require Import Undecidability.PCP.PCP.
Require Import Undecidability.PCP.Util.Facts.
Import PCPListNotation.
Require Import Undecidability.Shared.ListAutomation.
Require Import Undecidability.Synthetic.Definitions.
Set Default Goal Selector "!".
Set Default Proof Using "Type".
Section derivable_iff_PCPX.
Variable X : Type.
Implicit Type P : stack X.
Lemma derivable_PCPX P u v : derivable P u v -> exists A, A <<= P /\ A <> nil /\ tau1 A = u /\ tau2 A = v.
Proof.
induction 1 as [ x y | x y ? ? ? ? (A & ? & ? & ? & ?)].
- exists [(x,y)]; repeat split; cbn; simpl_list; auto; discriminate.
- exists ((x,y) :: A); repeat split; simpl; auto; try discriminate; congruence.
Qed.
Lemma PCPX_derivable P u v : (exists A, A <<= P /\ A <> nil /\ tau1 A = u /\ tau2 A = v) -> derivable P u v.
Proof.
intros (A & H1 & H2 & <- & <-).
revert H1; pattern A; revert A H2.
eapply list_ind_ne; cbn; intros (x,y) H.
- simpl_list; constructor 1; auto.
- constructor 2; eauto.
Qed.
Theorem PCPX_iff_dPCP P : PCPX P <-> dPCP P.
Proof.
split.
- intros (A & H1 & H2 & H3); exists (tau1 A).
rewrite H3 at 2; apply PCPX_derivable.
exists A; auto.
- intros (u & Hu).
apply derivable_PCPX in Hu.
destruct Hu as (A & H1 & H2 & H3 & H4).
exists A; subst; auto.
Qed.
End derivable_iff_PCPX.
Lemma reductionLR (X : Type) : @PCPX X ⪯ @dPCP X.
Proof. exists id; intro; now rewrite PCPX_iff_dPCP. Qed.
Lemma reductionRL (X : Type) : @dPCP X ⪯ @PCPX X.
Proof. exists id; intro; now rewrite PCPX_iff_dPCP. Qed.
Import ListNotations.
Require Import Undecidability.PCP.PCP.
Require Import Undecidability.PCP.Util.Facts.
Import PCPListNotation.
Require Import Undecidability.Shared.ListAutomation.
Require Import Undecidability.Synthetic.Definitions.
Set Default Goal Selector "!".
Set Default Proof Using "Type".
Section derivable_iff_PCPX.
Variable X : Type.
Implicit Type P : stack X.
Lemma derivable_PCPX P u v : derivable P u v -> exists A, A <<= P /\ A <> nil /\ tau1 A = u /\ tau2 A = v.
Proof.
induction 1 as [ x y | x y ? ? ? ? (A & ? & ? & ? & ?)].
- exists [(x,y)]; repeat split; cbn; simpl_list; auto; discriminate.
- exists ((x,y) :: A); repeat split; simpl; auto; try discriminate; congruence.
Qed.
Lemma PCPX_derivable P u v : (exists A, A <<= P /\ A <> nil /\ tau1 A = u /\ tau2 A = v) -> derivable P u v.
Proof.
intros (A & H1 & H2 & <- & <-).
revert H1; pattern A; revert A H2.
eapply list_ind_ne; cbn; intros (x,y) H.
- simpl_list; constructor 1; auto.
- constructor 2; eauto.
Qed.
Theorem PCPX_iff_dPCP P : PCPX P <-> dPCP P.
Proof.
split.
- intros (A & H1 & H2 & H3); exists (tau1 A).
rewrite H3 at 2; apply PCPX_derivable.
exists A; auto.
- intros (u & Hu).
apply derivable_PCPX in Hu.
destruct Hu as (A & H1 & H2 & H3 & H4).
exists A; subst; auto.
Qed.
End derivable_iff_PCPX.
Lemma reductionLR (X : Type) : @PCPX X ⪯ @dPCP X.
Proof. exists id; intro; now rewrite PCPX_iff_dPCP. Qed.
Lemma reductionRL (X : Type) : @dPCP X ⪯ @PCPX X.
Proof. exists id; intro; now rewrite PCPX_iff_dPCP. Qed.