Require Import List.
Import ListNotations.
Require Import Undecidability.SemiUnification.SemiU.
Require Import ssreflect ssrfun ssrbool.
Require Import Undecidability.Synthetic.Definitions.
Theorem reduction : RU2SemiU ⪯ SemiU.
Proof.
exists (fun '(s0, s1, t) => [(s0, t); (s1, t)]).
move=> [[s0 s1] t]. constructor.
- move=> [φ] [ψ0] [ψ1] [Hψ0 Hψ1]. exists φ.
apply /Forall_forall.
by constructor; [by exists ψ0 | constructor; [by exists ψ1|]].
- move=> [φ].
move=> /Forall_forall /Forall_cons_iff [[ψ0 Hψ0]] /Forall_cons_iff [[ψ1 Hψ1]] _.
by exists φ, ψ0, ψ1.
Qed.