From Undecidability.Shared.Libs.PSL Require Import BasicDefinitions.
From Undecidability.Shared.Libs.PSL Require Import FiniteTypes.FinTypes.
From Undecidability.Shared.Libs.PSL Require Import Vectors.Vectors.
From Undecidability.Shared.Libs.PSL Require Import Vectors.VectorDupfree.
Import VectorNotations2.
From Undecidability.Shared.Libs.PSL Require Import FiniteTypes.Cardinality.
Definition Fin_initVect (n : nat) : Vector.t (Fin.t n) n :=
tabulate (fun i : Fin.t n => i).
Lemma Fin_initVect_dupfree n :
dupfree (Fin_initVect n).
Proof.
unfold Fin_initVect.
eapply dupfree_tabulate_injective.
firstorder.
Qed.
Lemma Fin_initVect_full n k :
Vector.In k (Fin_initVect n).
Proof.
unfold Fin_initVect.
apply in_tabulate. eauto.
Qed.
Definition Fin_initVect_nth (n : nat) (k : Fin.t n) :
Vector.nth (Fin_initVect n) k = k.
Proof. unfold Fin_initVect. apply nth_tabulate. Qed.
Import VecToListCoercion.
#[global]
Instance Fin_finTypeC n : finTypeC (EqType (Fin.t n)).
Proof.
constructor 1 with (enum := Fin_initVect n).
intros x. cbn in x.
eapply dupfreeCount.
- eapply tolist_dupfree. apply Fin_initVect_dupfree.
- eapply tolist_In. apply Fin_initVect_full.
Defined.
#[export] Hint Extern 4 (finTypeC (EqType (Fin.t _))) => eapply Fin_finTypeC : typeclass_instances.
Lemma Fin_cardinality n : Cardinality (finType_CS (Fin.t n)) = n.
Proof.
unfold Cardinality, elem, enum. cbn. unfold Fin_initVect. now rewrite vector_to_list_length.
Qed.
Fixpoint Vector_pow {X: Type} (A: list X) n {struct n} : list (Vector.t X n) :=
match n with
| 0 => [Vector.nil _]
| S n => concat (map (fun a => map (fun v => a:::v) (Vector_pow A n) ) A)
end.
#[global]
Instance Vector_finTypeC (A:finType) n: finTypeC (EqType (Vector.t A n)).
Proof.
exists (undup ((Vector_pow (elem A) n))). cbn in *.
intros v. eapply dupfreeCount.
- eapply dupfree_undup.
- rewrite undup_id_equi. induction v; cbn.
+ eauto.
+ eapply in_concat_iff. eexists; split.
2:eapply in_map_iff. 2:eexists.
2:split. 2:reflexivity.
eapply in_map_iff. eauto.
eapply elem_spec.
Defined.
#[export] Hint Extern 4 (finTypeC (EqType (Vector.t _ _))) => eapply Vector_finTypeC : typeclass_instances.
Lemma ProdCount (T1 T2: eqType) (A: list T1) (B: list T2) (a:T1) (b:T2) :
FinTypesDef.count (prodLists A B) (a,b) = FinTypesDef.count A a * FinTypesDef.count B b .
Proof.
induction A.
- reflexivity.
- cbn. rewrite <- countSplit. decide (a = a0) as [E | E].
+ cbn. f_equal. subst a0. apply countMap. eauto.
+ rewrite <- plus_O_n. f_equal. now apply countMapZero. eauto.
Qed.
Lemma prod_enum_ok (T1 T2: finType) (x: T1 * T2):
FinTypesDef.count (prodLists (elem T1) (elem T2)) x = 1.
Proof.
destruct x as [x y]. rewrite ProdCount. unfold elem.
now repeat rewrite enum_ok.
Qed.
Global
Instance finTypeC_Prod (F1 F2: finType) : finTypeC (EqType (F1 * F2)).
Proof.
econstructor. apply prod_enum_ok.
Defined.
From Undecidability.Shared.Libs.PSL Require Import FiniteTypes.FinTypes.
From Undecidability.Shared.Libs.PSL Require Import Vectors.Vectors.
From Undecidability.Shared.Libs.PSL Require Import Vectors.VectorDupfree.
Import VectorNotations2.
From Undecidability.Shared.Libs.PSL Require Import FiniteTypes.Cardinality.
Definition Fin_initVect (n : nat) : Vector.t (Fin.t n) n :=
tabulate (fun i : Fin.t n => i).
Lemma Fin_initVect_dupfree n :
dupfree (Fin_initVect n).
Proof.
unfold Fin_initVect.
eapply dupfree_tabulate_injective.
firstorder.
Qed.
Lemma Fin_initVect_full n k :
Vector.In k (Fin_initVect n).
Proof.
unfold Fin_initVect.
apply in_tabulate. eauto.
Qed.
Definition Fin_initVect_nth (n : nat) (k : Fin.t n) :
Vector.nth (Fin_initVect n) k = k.
Proof. unfold Fin_initVect. apply nth_tabulate. Qed.
Import VecToListCoercion.
#[global]
Instance Fin_finTypeC n : finTypeC (EqType (Fin.t n)).
Proof.
constructor 1 with (enum := Fin_initVect n).
intros x. cbn in x.
eapply dupfreeCount.
- eapply tolist_dupfree. apply Fin_initVect_dupfree.
- eapply tolist_In. apply Fin_initVect_full.
Defined.
#[export] Hint Extern 4 (finTypeC (EqType (Fin.t _))) => eapply Fin_finTypeC : typeclass_instances.
Lemma Fin_cardinality n : Cardinality (finType_CS (Fin.t n)) = n.
Proof.
unfold Cardinality, elem, enum. cbn. unfold Fin_initVect. now rewrite vector_to_list_length.
Qed.
Fixpoint Vector_pow {X: Type} (A: list X) n {struct n} : list (Vector.t X n) :=
match n with
| 0 => [Vector.nil _]
| S n => concat (map (fun a => map (fun v => a:::v) (Vector_pow A n) ) A)
end.
#[global]
Instance Vector_finTypeC (A:finType) n: finTypeC (EqType (Vector.t A n)).
Proof.
exists (undup ((Vector_pow (elem A) n))). cbn in *.
intros v. eapply dupfreeCount.
- eapply dupfree_undup.
- rewrite undup_id_equi. induction v; cbn.
+ eauto.
+ eapply in_concat_iff. eexists; split.
2:eapply in_map_iff. 2:eexists.
2:split. 2:reflexivity.
eapply in_map_iff. eauto.
eapply elem_spec.
Defined.
#[export] Hint Extern 4 (finTypeC (EqType (Vector.t _ _))) => eapply Vector_finTypeC : typeclass_instances.
Lemma ProdCount (T1 T2: eqType) (A: list T1) (B: list T2) (a:T1) (b:T2) :
FinTypesDef.count (prodLists A B) (a,b) = FinTypesDef.count A a * FinTypesDef.count B b .
Proof.
induction A.
- reflexivity.
- cbn. rewrite <- countSplit. decide (a = a0) as [E | E].
+ cbn. f_equal. subst a0. apply countMap. eauto.
+ rewrite <- plus_O_n. f_equal. now apply countMapZero. eauto.
Qed.
Lemma prod_enum_ok (T1 T2: finType) (x: T1 * T2):
FinTypesDef.count (prodLists (elem T1) (elem T2)) x = 1.
Proof.
destruct x as [x y]. rewrite ProdCount. unfold elem.
now repeat rewrite enum_ok.
Qed.
Global
Instance finTypeC_Prod (F1 F2: finType) : finTypeC (EqType (F1 * F2)).
Proof.
econstructor. apply prod_enum_ok.
Defined.