From Undecidability Require Import Shared.ListAutomation Shared.Dec.
From Undecidability.Synthetic Require Import Definitions DecidabilityFacts EnumerabilityFacts ListEnumerabilityFacts MoreEnumerabilityFacts.
Require Import Arith ConstructiveEpsilon.
Import ListAutomationNotations.
Local Set Implicit Arguments.
Local Unset Strict Implicit.
Set Default Proof Using "Type".
Definition mu (p : nat -> Prop) :
(forall x, dec (p x)) -> ex p -> sig p.
Proof.
apply constructive_indefinite_ground_description_nat.
Defined.
Notation mu' d H := (proj1_sig (mu d H)).
Lemma mu_least (p : nat -> Prop) (d : forall x, dec (p x)) (H : ex p) :
forall n, p n -> mu' d H <= n.
Proof.
intros n H'.
destruct (Nat.le_gt_cases (mu' d H) n) as [Hl | Hl]; eauto.
exfalso.
enough (mu' d H <= n) by lia.
eapply rel_ls_lower_bound with (start := 0); eauto with arith.
unfold mu, constructive_indefinite_ground_description_nat.
now destruct linear_search_from_0_conform.
Qed.
Definition generating X :=
forall (A : list X), exists x, ~ x el A.
Definition injective X Y (f : X -> Y) :=
forall x x', f x = f x' -> x = x'.
Definition infinite X :=
exists (f : nat -> X), injective f.
Section Inf.
Variables (X : Type) (f' : nat -> option X).
Hypothesis Hf' : forall x, exists n, f' n = Some x.
Hypothesis HX : eq_dec X.
Section Gen.
Variable f : nat -> X.
Hypothesis Hf : injective f.
Fixpoint LX n :=
match n with
| 0 => [f 0]
| S n => f (S n) :: LX n
end.
Lemma LX_len n :
length (LX n) = S n.
Proof using Hf.
induction n; cbn; eauto.
Qed.
Lemma LX_el n x :
x el LX n -> exists n', n' <= n /\ f n' = x.
Proof.
induction n.
- intros [H|[] ]. exists 0. split; auto.
- intros [H|H]; eauto.
destruct (IHn H) as [n'[H1 H2] ].
exists n'. split; auto.
Qed.
Lemma LX_NoDup n :
NoDup (LX n).
Proof using Hf.
induction n; cbn; repeat constructor; auto.
intros (n'&H1&H2) % LX_el.
apply Hf in H2. lia.
Qed.
Lemma sub_dec (A B : list X) :
(A <<= B) + {x | x el A /\ ~ x el B}.
Proof using HX.
revert B. induction A; intros B; cbn; auto.
destruct (IHA B); decide (a el B); auto.
- right. exists a. split; auto.
- destruct s as (x&H1&H2). right.
exists x. split; auto.
- right. exists a. split; auto.
Qed.
Lemma X_gen :
generating X.
Proof using Hf HX.
intros A. destruct (sub_dec (LX (length A)) A) as [H|H].
- apply NoDup_incl_length in H; try apply LX_NoDup.
rewrite LX_len in H. lia.
- destruct H as [x [_ H] ]. now exists x.
Qed.
End Gen.
Hypothesis Hg : generating X.
Instance el_dec :
forall (A : list X) x, dec (x el A).
Proof using HX.
intros A x. induction A; cbn; auto.
Qed.
Definition dummy : X.
Proof using Hg Hf'.
pose (p := fun n => exists x, f' n = Some x).
destruct (@mu p) as [n Hn].
- intros n. destruct (f' n) eqn : H.
+ left. now exists x.
+ right. intros [x H']. congruence.
- destruct (Hg nil) as [x Hx]. destruct (Hf' x) as [n Hn]. now exists n, x.
- destruct (f' n) eqn : H; trivial.
exfalso. destruct Hn as [x Hx]. congruence.
Qed.
Definition f n :=
match (f' n) with Some x => x | None => dummy end.
Lemma f_sur :
forall x, exists n, f n = x.
Proof.
intros x. destruct (Hf' x) as [n Hn]. exists n.
unfold f. now rewrite Hn.
Qed.
Definition le_f x y :=
exists n, f n = x /\ forall n', f n' = y -> n <= n'.
Lemma gen (A : list X) :
{ x | ~ x el A /\ forall y, ~ y el A -> le_f x y}.
Proof using HX.
pose (p := fun n => ~ f n el A).
assert (H1 : forall x, dec (p x)).
{ intros n. destruct (el_dec A (f n)) as [H|H].
- right. intros H'. contradiction.
- left. assumption. }
assert (H2 : exists x, p x).
{ destruct (Hg A) as [x Hx]. destruct (f_sur x) as [n <-]. now exists n. }
exists (f (mu' H1 H2)). split; try apply proj2_sig.
intros y Hy. exists (mu' H1 H2). split; trivial.
intros n <-. apply mu_least, Hy.
Defined.
Definition gen' A :=
proj1_sig (gen A).
Lemma gen_spec A :
~ gen' A el A.
Proof.
unfold gen'. destruct (gen A); cbn. apply a.
Qed.
Lemma gen_le_f A :
forall x, ~ x el A -> le_f (gen' A) x.
Proof.
unfold gen'. destruct (gen A); cbn. apply a.
Qed.
Fixpoint LL n :=
match n with 0 => nil | S n => LL n ++ [gen' (LL n)] end.
Definition F n :=
gen' (LL n).
Lemma LL_cum :
cumulative LL.
Proof.
intros n. now exists [(F n)].
Qed.
Lemma F_nel n :
~ F n el LL n.
Proof.
apply gen_spec.
Qed.
Lemma F_el n :
F n el LL (S n).
Proof.
cbn. apply in_app_iff. now right.
Qed.
Lemma F_lt n m :
n < m -> F n el LL m.
Proof.
intros H. apply (cum_ge' (n:=S n)).
- apply LL_cum.
- apply F_el.
- lia.
Qed.
Lemma F_inj' n m :
F n = F m -> ~ n < m.
Proof.
intros H1 H2 % F_lt. rewrite H1 in H2. apply (F_nel H2).
Qed.
Lemma F_inj :
injective F.
Proof.
intros n m Hnm. destruct (Nat.lt_total n m) as [H|[H|H] ]; trivial.
- contradiction (F_inj' Hnm H).
- symmetry in Hnm. contradiction (F_inj' Hnm H).
Qed.
Lemma lt_acc n :
Acc lt n.
Proof.
induction n.
- constructor. intros m H. lia.
- constructor. intros m H.
destruct (Nat.lt_total n m) as [H'|[->|H'] ].
+ lia.
+ assumption.
+ now apply IHn.
Qed.
Lemma LL_f n :
f n el LL (S n).
Proof.
induction (lt_acc n) as [n _ IH].
decide _; try eassumption. exfalso.
assert (H : ~ f n el LL n).
{ intros H. apply n0. apply (cum_ge' LL_cum H). auto. }
apply gen_le_f in H as [n'[H1 H2] ].
specialize (H2 n eq_refl).
destruct (Nat.lt_total n' n) as [H3|[->|H3] ].
- apply (gen_spec (A:=LL n)). rewrite <- H1.
now apply (cum_ge' LL_cum (IH n' H3)).
- apply n0. rewrite H1. apply in_app_iff; fold LL.
right. left. reflexivity.
- lia.
Qed.
Lemma LL_F x n :
x el LL n -> exists m, F m = x.
Proof.
induction n; cbn; auto.
intros [H|[H|H]] % in_app_iff; auto.
now exists n.
Qed.
Lemma F_sur :
forall x, exists n, F n = x.
Proof.
intros x. destruct (f_sur x) as [n H].
destruct (LL_F (LL_f n)) as [m H'].
exists m. congruence.
Qed.
Definition G x :=
mu' _ (F_sur x).
Lemma FG n :
F (G n) = n.
Proof.
unfold G. apply proj2_sig.
Qed.
Lemma GF n :
G (F n) = n.
Proof.
apply F_inj. now rewrite FG.
Qed.
End Inf.