Require Import List Lia Relation_Definitions Relation_Operators Operators_Properties.
Import ListNotations.
Require Import Undecidability.SystemF.SysF Undecidability.SystemF.Autosubst.syntax Undecidability.SystemF.Autosubst.unscoped.
Import UnscopedNotations.
From Undecidability.SystemF.Util Require Import Facts poly_type_facts pure_term_facts term_facts typing_facts iipc2_facts pure_typing_facts.
Require Import ssreflect ssrbool ssrfun.
Set Default Goal Selector "!".
Definition K' M N := pure_app (pure_abs (ren_pure_term S M)) N.
Lemma pure_typing_K'I {Gamma M N t}:
pure_typing Gamma M t -> pure_typable Gamma N -> pure_typing Gamma (K' M N) t.
Proof.
move=> HM [tN HtN]. apply: (pure_typing_pure_app_simpleI (s := tN)); last done.
apply: pure_typing_pure_abs_simpleI. apply: pure_typing_ren_pure_term; [by eassumption | done].
Qed.
Lemma pure_typing_K'E {Gamma M N t} : pure_typing Gamma (K' M N) t ->
pure_typing Gamma M t /\ pure_typable Gamma N.
Proof.
rewrite /K'.
move=> /pure_typingE [n] [?] [?] [?] [+] [+] [H1C ->] => /pure_typingE'.
move=> /(pure_typing_ren_pure_term_allfv_pure_term Nat.pred (Delta := (map (ren_poly_type (Nat.add n)) Gamma))).
apply: unnest.
{ rewrite allfv_pure_term_ren_pure_term /=. by apply: allfv_pure_term_TrueI. }
rewrite renRen_pure_term ren_pure_term_id.
move=> /(pure_typing_contains H1C) /pure_typing_many_poly_absI HM.
move=> /(pure_typing_ren_poly_type (fun x => x - n)) /pure_typableI HN.
constructor; first done.
congr pure_typable: HN. rewrite map_map. apply: map_id' => ?.
rewrite ?poly_type_norm ren_poly_type_id' /=; by [|lia].
Qed.
Lemma pure_typable_K'I {Gamma M N}:
pure_typable Gamma M -> pure_typable Gamma N -> pure_typable Gamma (K' M N).
Proof. move=> [tM] ? ?. exists tM. by apply: pure_typing_K'I. Qed.
Lemma pure_typable_K'E {Gamma M N} : pure_typable Gamma (K' M N) ->
pure_typable Gamma M /\ pure_typable Gamma N.
Proof. by move=> [?] /pure_typing_K'E [/pure_typableI]. Qed.
Fixpoint leftmost_poly_var (t: poly_type) :=
match t with
| poly_var x => Some x
| poly_arr s t => leftmost_poly_var s
| poly_abs t => if leftmost_poly_var t is Some (S x) then Some x else None
end.
Fixpoint leftmost_path_length (t: poly_type) :=
match t with
| poly_var x => 0
| poly_arr s t => 1 + leftmost_path_length s
| poly_abs t => leftmost_path_length t
end.
Lemma leftmost_poly_var_ren_poly_type {ξ t} :
leftmost_poly_var (ren_poly_type ξ t) = omap ξ (leftmost_poly_var t).
Proof.
elim: t ξ; [done | by move=> ? + ? _ ? /= => -> |].
move=> t + ? /= => ->. case: (leftmost_poly_var t); [by case | done].
Qed.
Lemma leftmost_poly_var_subst_poly_type {σ t} :
leftmost_poly_var (subst_poly_type σ t) = obind (σ >> leftmost_poly_var) (leftmost_poly_var t).
Proof.
elim: t σ; [done | by move=> ? + ? _ ? /= => -> |].
move=> t + σ /= => ->. case: (leftmost_poly_var t); last done.
move=> [|x] /=; first done.
rewrite /funcomp /= leftmost_poly_var_ren_poly_type.
by case: (leftmost_poly_var _).
Qed.
Lemma leftmost_poly_var_many_poly_abs {n t x} :
leftmost_poly_var (many_poly_abs n t) = Some x <->
leftmost_poly_var t = Some (n+x).
Proof.
elim: n x; first done.
move=> n /= IH x. have ->: S (n + x) = n + S x by lia.
rewrite -IH. case: (leftmost_poly_var (many_poly_abs n t)); last done.
move=> [|y]; first done. constructor; by move=> [->].
Qed.
Lemma leftmost_path_length_ren_poly_type {ξ t} :
leftmost_path_length (ren_poly_type ξ t) = leftmost_path_length t.
Proof.
elim: t ξ; [done | by move=> ? + ? _ ? /= => -> |].
move=> t + ? /= => ->. case: (leftmost_poly_var t); [by case | done].
Qed.
Lemma leftmost_path_length_subst_poly_type {σ t} :
leftmost_path_length (subst_poly_type σ t) =
(if leftmost_poly_var t is Some x then leftmost_path_length (σ x) else 0) +
leftmost_path_length t.
Proof.
elim: t σ; [done | by move=> ? + ? _ ? /= => -> |].
move=> t + σ /= => ->. case: (leftmost_poly_var t); last done.
move=> [|x] /=; first done.
by rewrite /funcomp /= leftmost_path_length_ren_poly_type.
Qed.
Lemma leftmost_path_length_many_poly_abs {n t} :
leftmost_path_length (many_poly_abs n t) = leftmost_path_length t.
Proof. by elim: n. Qed.
Lemma contains_leftmost_path_length_eq {n s t} :
contains (many_poly_abs n s) t ->
not (is_poly_abs s) ->
match leftmost_poly_var s with
| None => leftmost_path_length s = leftmost_path_length t
| Some x => n <= x -> leftmost_path_length s = leftmost_path_length t
end.
Proof.
move Es': (many_poly_abs n s) => s' /clos_rt_rt1n_iff Hs't.
elim: Hs't n s Es'.
- move=> > <- _. rewrite ?leftmost_path_length_many_poly_abs.
by case: (leftmost_poly_var _).
- move=> > [] r > _ IH [|n]; first by case=> /=.
move=> s [?]. subst. evar (s'' : poly_type).
have := IH n s''. rewrite subst_poly_type_many_poly_abs.
subst s'' => /(_ ltac:(done)).
move: s {IH} => [x | s {}t | /=]; last done.
+ move=> /= + _ ?.
have ->: x = n + (1 + (x - n - 1)) by lia.
rewrite ?iter_up_poly_type_poly_type ?leftmost_poly_var_ren_poly_type
?leftmost_path_length_ren_poly_type /=.
apply; by [|lia].
+ move=> /(_ ltac:(done)).
rewrite leftmost_poly_var_subst_poly_type /=.
move Eox: (leftmost_poly_var s) => ox. case: ox Eox.
* move=> x Hsx /= + _ ?.
rewrite leftmost_path_length_subst_poly_type Hsx.
have ->: x = n + (1 + (x - n - 1)) by lia.
rewrite ?iter_up_poly_type_poly_type ?leftmost_poly_var_ren_poly_type
?leftmost_path_length_ren_poly_type /=.
apply. by lia.
* move=> /= Hs <- _. by rewrite leftmost_path_length_subst_poly_type Hs.
Qed.
Lemma pure_typable_self_application {Gamma x n t} :
not (is_poly_abs t) ->
nth_error Gamma x = Some (many_poly_abs n t) ->
pure_typable Gamma (pure_app (pure_var x) (pure_var x)) ->
exists y, y < n /\ leftmost_poly_var t = Some y.
Proof.
move=> Ht Hx /pure_typableE [?] [?] [].
move=> /pure_typingE' [?] []. rewrite Hx => [[<-]] H1C.
move=> /pure_typingE [n3] [?] [s'] [+] [].
rewrite nth_error_map Hx => [[?]] H2C ?. subst.
move: Ht H1C H2C. clear => Ht + /contains_ren_poly_type_addLR.
move=> /contains_leftmost_path_length_eq + /contains_leftmost_path_length_eq.
move=> /(_ Ht) + /(_ Ht).
case: (leftmost_poly_var t).
- move=> y H1y H2y. exists y. constructor; last done.
suff: (not (n <= y)) by lia.
move=> /copy [/H1y + /H2y] => -> /=.
rewrite leftmost_path_length_many_poly_abs leftmost_path_length_ren_poly_type.
by lia.
- move=> -> /=.
rewrite leftmost_path_length_many_poly_abs leftmost_path_length_ren_poly_type.
by lia.
Qed.
Definition Mω := pure_abs (pure_app (pure_var 0) (pure_var 0)).
Lemma pure_typing_Mω {Gamma t} :
pure_typing Gamma Mω t ->
exists n1 n2 s' t' y,
t = many_poly_abs n1 (poly_arr (many_poly_abs n2 s') t') /\
y < n2 /\ leftmost_poly_var s' = Some y.
Proof.
rewrite /Mω. move=> /pure_typingE [n1] [s] [t'] [+ ->].
have := many_poly_absI s. move=> [n] [s'] [->].
move=> + /pure_typableI /pure_typable_self_application.
move=> + H => /H /= => /(_ _ ltac:(done)) [y] [? ?].
by exists n1, n, s', t', y.
Qed.
Definition M_Wells N :=
pure_abs (K' (pure_var 0) (K' (pure_abs (pure_app (pure_var 1) (pure_app (pure_var 1) (pure_var 0)))) N)).
Definition M_Wells_J N := pure_app
(pure_abs (K' (pure_app (pure_var 0) (pure_var 0)) (pure_app (pure_var 0) Mω)))
(M_Wells N).
Lemma leftmost_poly_var_contains_poly_arr {s x s' t'} :
leftmost_poly_var s = Some x ->
contains s (poly_arr s' t') ->
exists n'' s'' t'', s = many_poly_abs n'' (poly_arr s'' t'').
Proof.
have [n'' [s'' [?]]] := many_poly_absI s. subst.
case Es'': (s''); [ move=> _ | by move=> *; do 3 eexists | by move=> /=].
rewrite leftmost_poly_var_many_poly_abs /=.
move=> [?]. subst => /contains_tidyI.
rewrite tidy_many_poly_abs_le /=; first by lia.
by move=> /containsE.
Qed.
Lemma pure_typable_pure_app_0_Mω {n1 n2 s x t1 t2 Gamma} :
leftmost_poly_var s = Some (n2 + x) ->
pure_typable
(many_poly_abs n1 (poly_arr (many_poly_abs n2 (poly_arr s t1)) t2) :: Gamma)
(pure_app (pure_var 0) Mω) ->
exists n, s = many_poly_abs n (poly_var (n + (n2 + x))).
Proof.
move=> H /pure_typableE [?] [?] [/pure_typingE'] [?] [[<-]].
move=> /contains_many_poly_absE [?] [?].
set σ := (fold_right _ _ _). rewrite subst_poly_type_many_poly_abs /=.
set n := (_ - length _). case Hn: (n); last done. subst n.
move=> [? ?]. subst => /pure_typing_Mω [?] [?] [?] [?] [?] [+] [?].
rewrite subst_poly_type_many_poly_abs /=.
move=> /many_poly_abs_eqE' [?] [+ ?]. subst.
have [n' [s' [?]]] := many_poly_absI s. subst.
case Es': (s'); [ | | by move=> /=].
- subst => _. move: H. rewrite leftmost_poly_var_many_poly_abs /=.
move=> [?]. subst => *. by eexists.
- rewrite subst_poly_type_many_poly_abs /=.
move=> _ /esym /many_poly_abs_eqE'' => /(_ ltac:(done)) [?] [?] ?. subst.
move: H. rewrite ?leftmost_poly_var_many_poly_abs /= leftmost_poly_var_subst_poly_type.
move=> ->. rewrite /= ?iter_up_poly_type_poly_type ?leftmost_poly_var_ren_poly_type.
case: (leftmost_poly_var _); last done.
move=> ? /= []. by lia.
Qed.
Lemma pure_typable_pure_app_0_0' {n1 n2 n3 n4 x y n5 s t Gamma}:
pure_typable
(many_poly_abs n1
(poly_arr
(many_poly_abs n2
(poly_arr (many_poly_abs n3 (poly_var (n3 + (n2 + x)))) (many_poly_abs n4 (poly_var y))))
(many_poly_abs n5 (poly_arr s t))) :: Gamma)
(pure_app (pure_var 0) (pure_var 0)) ->
exists y', y = n4 + (n2 + y').
Proof.
move=> /pure_typableE [?] [?] [/pure_typingE'] [?] [[?]] H1c. subst.
move=> /pure_typingE [n6] [?] [?] [[?]] [H2c ?]. subst.
move: H1c => /contains_poly_arrE [?] [?] /= [+ ?]. subst.
set σ := (fold_right _ _ _).
rewrite subst_poly_type_many_poly_abs /=.
move=> /many_poly_abs_eqE'' => /(_ ltac:(done)) [n7] [? ?]. subst.
move: H2c. rewrite ren_poly_type_many_poly_abs /=.
move=> /contains_sub' [_].
rewrite ren_poly_type_many_poly_abs /= many_poly_abs_many_poly_abs.
move=> /contains_sub [?] [?] [?] [+] _.
rewrite subst_poly_type_many_poly_abs /= many_poly_abs_many_poly_abs.
move=> /many_poly_abs_eqE'' => /(_ ltac:(done)) [n8] [+ ?]. subst.
have [?|?] : y < n4 + n6 + n7 \/ n4 + n6 + n7 <= y by lia.
- rewrite iter_plus iter_up_poly_type_poly_type_lt; first by lia.
by case: n8.
- move=> _. exists (y - n4 - n6 - n7). by lia.
Qed.
Theorem pure_typable_intro_poly_arr_0_0 M : { N |
forall Gamma,
pure_typable (map tidy ((poly_arr (poly_var 0) (poly_var 0)) :: (map (ren_poly_type S) Gamma))) M <->
pure_typable (map tidy Gamma) N }.
Proof.
exists (M_Wells_J M) => Gamma. constructor.
- pose tI := poly_arr (poly_var 0) (poly_var 0).
move=> HM. rewrite /M_Wells_J. pose t0 := poly_arr tI tI. exists t0.
apply: (pure_typing_pure_app_simpleI (s := poly_abs t0)).
+ apply: pure_typing_pure_abs_simpleI. apply: pure_typing_K'I.
* apply: (pure_typing_pure_app_simpleI (s := t0)).
** apply: (pure_typing_pure_var 0); [done | by apply /rt_step /contains_step_subst].
** apply: (pure_typing_pure_var 0); [done | by apply /rt_step /contains_step_subst].
* pose s0 := poly_arr (poly_abs (poly_var 0)) (poly_abs (poly_var 0)). exists s0.
apply: (pure_typing_pure_app_simpleI (s := s0)).
** apply: (pure_typing_pure_var 0); [done | by apply /rt_step /contains_step_subst].
** apply: pure_typing_pure_abs_simpleI.
apply: (pure_typing_pure_app_simpleI (s := (poly_abs (poly_var 0)))).
*** apply: (pure_typing_pure_var 0); [done | by apply /rt_step /contains_step_subst].
*** apply: (pure_typing_pure_var 0); [done | by apply /rt_step /contains_step_subst].
+ rewrite /M_Wells. apply: (pure_typing_pure_abs 1).
apply: pure_typing_K'I; first by apply: pure_typing_pure_var_simpleI.
apply: pure_typable_K'I.
* exists tI. apply: pure_typing_pure_abs_simpleI.
apply: pure_typing_pure_app_simpleI; first by apply: pure_typing_pure_var_simpleI.
apply: pure_typing_pure_app_simpleI; by apply: pure_typing_pure_var_simpleI.
* move: HM. rewrite /= ?map_map. congr pure_typable. congr cons.
apply: map_ext => ?. by rewrite tidy_ren_poly_type.
- rewrite /M_Wells_J. move=> /pure_typableE [s] [?] [].
move=> /pure_typingE' /pure_typableI /pure_typable_K'E [].
have [ns [s' [? Hs]]] := many_poly_absI s. subst s. rename s' into s.
move=> /copy [H00] /pure_typable_self_application => /(_ _ _ ltac:(eassumption) ltac:(done)).
move=> [y [Hyns Hsy]] H. rewrite /M_Wells.
move=> /pure_typingE [nM] [?] [?] [+ /many_poly_abs_eqE'].
case Es: (s); [by move=> + [] | | by subst s].
clear Hs => + [?] [? ?]. subst.
move=> /pure_typing_K'E [] /pure_typingE [?] [?] [?] [[?]] [H1c ?]. subst.
move=> /pure_typable_K'E [/pure_typableE] [?] /pure_typableE [?] [?] [].
move=> /pure_typingE' [?] [[?]] H2c. subst.
move=> /pure_typingE [?] [?] [?] [?] [+] [_] [H3c ?]. subst.
move=> /pure_typingE' [?] [[?]] H4c HM. subst.
move: (Hsy) => /= /leftmost_poly_var_contains_poly_arr => /(_ _ _ ltac:(eassumption)).
move=> [?] [?] [?] ?. subst.
move: Hsy. rewrite /= leftmost_poly_var_many_poly_abs /=.
move: H => /pure_typable_pure_app_0_Mω H /H{H} [? ?]. subst.
move: H2c => /contains_poly_arrE [?] [?] [+ ?]. subst.
rewrite subst_poly_type_many_poly_abs /= iter_up_poly_type_poly_type.
rewrite fold_right_length_ts ?iter_up_poly_type_poly_type /=.
move=> /many_poly_abs_eqE'' => /(_ ltac:(done)) [?] [? ?]. subst.
move: H4c. rewrite ren_poly_type_many_poly_abs /=.
move=> /contains_poly_arrE [?] [?] [? ?]. subst.
move: (H3c) => /contains_tidyI. rewrite tidy_many_poly_abs_le /=; first by lia.
move=> /contains_poly_varE [?] [?].
set t := (t in ren_poly_type _ t).
have [nt' [t' [?]]] := many_poly_absI t. subst t. subst.
case Et': (t'); [move=> _ | move=> _ | by subst t'; move=> /= ].
+ subst t'.
move: (H1c). rewrite ren_poly_type_many_poly_abs /=.
move=> /contains_sub [?] [?] [?] [?] _. subst.
move: H00. rewrite many_poly_abs_many_poly_abs.
move=> /pure_typable_pure_app_0_0' [y' ?] _. subst.
move: H3c => /contains_tidyI. rewrite tidy_many_poly_abs_le /=; first by lia.
rewrite tidy_subst_poly_type tidy_ren_poly_type tidy_many_poly_abs_le /=; first by lia.
rewrite iter_up_ren_ge; first by lia.
rewrite fold_right_length_ts_ge /=; first by lia.
move=> /containsE [?]. have ? : y = y' by lia. subst.
move: HM => [?] /pure_typing_tidyI /=.
rewrite tidy_many_poly_abs_le /=.
{ rewrite ?allfv_poly_type_many_poly_abs /= ?iter_scons_ge; by lia. }
rewrite tidy_many_poly_abs_le /=; first by lia.
rewrite tidy_many_poly_abs_le /=; first by lia.
move=> /(pure_typing_ren_poly_type (fun x => x - (nM - 1))) /= /pure_typableI.
congr pure_typable. congr cons.
* congr poly_arr; congr poly_var; by lia.
* rewrite ?map_map. apply: map_ext => ?.
rewrite ?tidy_ren_poly_type tidy_tidy ?poly_type_norm /=.
apply: extRen_poly_type. by lia.
+ rewrite ren_poly_type_many_poly_abs subst_poly_type_many_poly_abs /=.
rewrite (svalP tidy_many_poly_abs).
by move: (sval _) => [? ?] /many_poly_abs_eqE' /= [].
Qed.
Theorem pure_typable_intro_poly_bot M : { N |
forall Gamma,
pure_typable (map tidy ((poly_abs (poly_var 0)) :: Gamma)) M <->
pure_typable (map tidy Gamma) N }.
Proof.
exists (pure_abs M) => Gamma. constructor.
- by move=> [tM] /= /pure_typing_pure_abs_simpleI /pure_typableI.
- move=> /pure_typableE [s] [t] HM /=. exists t.
apply: (pure_typing_weaken_closed (s' := s) (Gamma1 := [])); [done | | done].
apply: (pure_typing_pure_var 0); [done | by apply /rt_step /contains_step_subst].
Qed.
Theorem pure_typable_intro_poly_var_0 M : { N |
forall Gamma,
pure_typable (map tidy (poly_var 0 :: poly_arr (poly_var 0) (poly_var 0) :: (map (ren_poly_type S) Gamma))) M <->
pure_typable (map tidy Gamma) N }.
Proof.
pose N := pure_app (ren_pure_term S (pure_abs M)) (pure_app (pure_var 1) (pure_var 0)).
have [N' HN'] := pure_typable_intro_poly_bot N.
have [N'' HN''] := pure_typable_intro_poly_arr_0_0 N'.
exists N'' => Gamma. constructor.
- move=> [tM] HtM. apply /HN'' /HN' {HN'' HN'}.
eexists. apply: (pure_typing_pure_app_simpleI (s := poly_var 0)).
+ move=> /=. apply: pure_typing_pure_abs_simpleI.
apply: pure_typing_ren_pure_term; first by eassumption. by case.
+ apply: (pure_typing_pure_app_simpleI (s := poly_var 0)).
* by apply: pure_typing_pure_var_simpleI.
* apply: (pure_typing_pure_var 0); first by reflexivity.
by apply /rt_step /(contains_step_subst (s := poly_var 0)).
- move /HN'' /HN' {HN'' HN'}. rewrite /N.
move=> /pure_typableE [?] [?] [] /= /pure_typingE' HM.
move=> /pure_typingE [n3] [?] [?] [?] [+] [+] [H2C ?]. subst.
move=> /pure_typingE' [?] [[?]] H3C _. subst.
move: H3C => /containsE [H1E ?]. subst.
move: H2C => /containsE ?. subst.
move: HM => /=.
set s := (s in pure_typing (s :: _) _ _).
set Gamma' := (Gamma' in pure_typing (s :: _ :: Gamma') _ _).
move=> /(pure_typing_ren_pure_term_allfv_pure_term (scons 0 (scons 1 S)) (Delta := s :: Gamma')).
apply: unnest.
{ rewrite allfv_pure_term_ren_pure_term /=. apply: allfv_pure_term_TrueI. by case. }
rewrite renRen_pure_term /= ren_pure_term_id'; first by case.
subst s Gamma'.
move=> /pure_typing_tidyI /=. rewrite tidy_many_poly_abs_le /=; first by lia.
move=> /pure_typableI.
congr pure_typable. congr cons; last congr cons.
+ congr poly_var. by lia.
+ rewrite ?map_map. apply: map_ext => ?. by rewrite tidy_tidy.
Qed.
Ltac first_pure_typingE :=
match goal with
| |- pure_typing _ (pure_app _ _) (poly_var _) -> _ =>
move=> /pure_typingE' [?] [?] [+] [+] ?
| |- pure_typing _ (pure_app _ _) (poly_arr _ _) -> _ =>
move=> /pure_typingE' [?] [?] [+] [+] ?
| |- pure_typing _ (pure_app _ _) _ -> _ =>
move=> /pure_typingE [?] [?] [?] [?] [+] [+] [? ?]
| |- pure_typing _ (pure_abs _) (poly_arr _ _) -> _ =>
move=> /pure_typingE'
| |- pure_typing _ (pure_abs _) _ -> _ =>
move=> /pure_typingE [?] [?] [?] [+ ?]
| |- pure_typing _ (pure_var _) (poly_var _) -> _ =>
move=> /pure_typingE' [?] [[?]] ?
| |- pure_typing _ (pure_var _) (poly_arr _ _) -> _ =>
move=> /pure_typingE' [?] [[?]] ?
| |- pure_typing _ (pure_var _) _ -> _ =>
move=> /pure_typingE [?] [?] [?] [[?]] [? ?]
| |- pure_typing _ (K' _ _) _ -> _ =>
move=> /pure_typing_K'E []
| |- pure_typable _ (K' _ _) -> _ =>
move=> /pure_typable_K'E []
| |- pure_typable _ (pure_var _) -> _ =>
move=> _
| |- pure_typable _ (pure_app _ _) -> _ =>
move=> /pure_typableE [?] [?] []
| |- pure_typable _ (pure_abs _) -> _ =>
move=> /pure_typableE [?]
end.
Ltac simplify_poly_type_eqs :=
match goal with
| H : contains (poly_var _) _ |- _ =>
move: H => /containsE ?
| H : contains (poly_arr _ _) _ |- _ =>
move: H => /containsE ?
| H : contains (many_poly_abs _ (poly_arr _ _)) (poly_arr _ _) |- _ =>
move: H => /contains_poly_arrE [?] [?] [? ?]
| H : contains (subst_poly_type (fold_right scons poly_var _) _) _ |- _ =>
move /contains_subst_poly_type_fold_rightE in H; rewrite ?many_poly_abs_many_poly_abs in H
| H : many_poly_abs _ (poly_var _) = subst_poly_type _ _ |- _ =>
move: H => /many_poly_abs_poly_var_eq_subst_poly_typeE => [[?]] [?] [?] [? ?]
| H : contains (ren_poly_type _ (ren_poly_type _ _)) _ |- _ =>
rewrite ?renRen_poly_type /= in H
| H : contains (ren_poly_type _ (many_poly_abs ?n (poly_var (?n + _)))) _ |- _ =>
rewrite ren_poly_type_many_poly_abs /= iter_up_ren in H
| H : contains (ren_poly_type _ (many_poly_abs ?n (poly_arr (poly_var (?n + _)) (poly_var (?n + _))))) _ |- _ =>
rewrite ren_poly_type_many_poly_abs /= ?iter_up_ren in H
| H : contains (many_poly_abs ?n (poly_var (?n + _))) _ |- _ =>
move: H => /contains_many_poly_abs_free [?] [?] [? ?]
| H : poly_arr _ _ = many_poly_abs ?n _ |- _ =>
(have ? : n = 0 by move : (n) H; case); subst n; rewrite /= in H
| H : many_poly_abs ?n _ = poly_var _ |- _ =>
(have ? : n = 0 by move : (n) H; case); subst n; rewrite /= in H
| H : poly_var _ = poly_var _ |- _ =>
move: H => [?]
end.
Arguments funcomp {X Y Z} _ _ / _.
Definition poly_abba := poly_abs (poly_abs (poly_arr (poly_var 1) (poly_arr (poly_var 0) (poly_arr (poly_var 0) (poly_var 1))))).
Lemma contains_poly_abbaI {s t s' t'} : s' = s -> t' = t ->
contains poly_abba (poly_arr s (poly_arr t (poly_arr t' s'))).
Proof.
move=> -> ->.
apply: rt_trans; apply: rt_step; apply: contains_stepI; first done.
by rewrite /= ?poly_type_norm subst_poly_type_poly_var.
Qed.
Theorem pure_typing_intro_poly_abba M : { N |
forall Gamma,
pure_typable (map tidy (poly_abba :: Gamma)) M <->
pure_typable (map tidy Gamma) N }.
Proof.
pose N0 := (pure_abs (pure_abs (pure_abs (pure_abs (
K' (pure_var 2) (K'
(pure_app (pure_var 3) (pure_var 0)) (pure_app (pure_var 3) (pure_var 1)))))))).
pose N1 := (pure_abs (K' (pure_app (pure_var 0) (pure_var 1))
(many_pure_app (pure_var 0) [pure_var 3; pure_var 2; pure_var 2; pure_var 2]))).
pose N2 := pure_app (ren_pure_term (Nat.add 3) (pure_abs M)) (pure_app N1 N0).
have [N2' HN2'] := pure_typable_intro_poly_bot N2.
have [N2'' HN2''] := pure_typable_intro_poly_var_0 N2'.
exists N2'' => Gamma. constructor.
- move=> [tM] HtM. apply /HN2'' /HN2' => {HN2'' HN2'}.
eexists. apply: (pure_typing_pure_app_simpleI (s := poly_abba)).
+ move=> /=. apply: pure_typing_pure_abs_simpleI.
move: HtM => /(pure_typing_ren_poly_type S) HtM.
apply: pure_typing_ren_pure_term; first by eassumption.
move=> [|]; first done.
move=> ? ? /= <-. congr nth_error. rewrite ?map_map.
apply: map_ext => ?. by rewrite tidy_ren_poly_type.
+ apply: (pure_typing_pure_app_simpleI
(s := poly_abs (poly_abs (poly_arr (poly_arr (poly_var 0) (poly_var 0)) (poly_arr (poly_var 1) (poly_arr (poly_var 0) (poly_arr (poly_var 0) (poly_var 1)))))))).
* apply: pure_typing_pure_abs_simpleI. apply: pure_typing_K'I.
** apply: (pure_typing_pure_app 2 (s := poly_arr (poly_var 0) (poly_var 0))).
*** apply: (pure_typing_pure_var 0); first by reflexivity.
apply: rt_trans; apply: rt_step; apply: contains_stepI; first done.
by rewrite /= ?poly_type_norm subst_poly_type_poly_var.
*** apply: (pure_typing_pure_var 0); first by reflexivity.
constructor. by apply: contains_stepI.
*** by apply: rt_refl.
** exists (poly_var 0). do 4 (apply: pure_typing_pure_app_simpleI; last by apply: pure_typing_pure_var_simpleI).
move=> /=. apply: (pure_typing_pure_var 0); first by reflexivity.
apply: rt_trans; apply: rt_step; apply: contains_stepI; first done.
by rewrite /= ?poly_type_norm subst_poly_type_poly_var.
* apply: (pure_typing_pure_abs 2). do 3 (apply: pure_typing_pure_abs_simpleI).
apply: pure_typing_K'I; first by apply: pure_typing_pure_var_simpleI.
exists (poly_var 0). apply: pure_typing_K'I;
first by apply: pure_typing_pure_app_simpleI; apply: pure_typing_pure_var_simpleI.
exists (poly_var 0). by apply: pure_typing_pure_app_simpleI; apply: pure_typing_pure_var_simpleI.
- move /HN2'' /HN2' => {HN2'' HN2'}. rewrite /N2 /N1 /N0 /= => {N2 N1 N0}.
do ? first_pure_typingE. move=> HM.
do ? first_pure_typingE. subst.
do ? (simplify_poly_type_eqs; subst).
do ? (match goal with H : many_poly_abs _ (poly_arr _ _) = subst_poly_type _ _ |- _ => move: H end).
move=> /many_poly_abs_poly_arr_eq_subst_poly_typeE [].
{ move=> [?] [? ?]. subst. do ? (simplify_poly_type_eqs; subst). done. }
move=> [?] [?] [? ?]. subst.
do ? (simplify_poly_type_eqs; subst).
do 2 (match goal with H : _ = fold_right scons poly_var _ (length _ + _) |- _ => move: H end).
do 2 (rewrite fold_right_length_ts_ge; first by lia).
move=> ? ?. do ? (simplify_poly_type_eqs; subst).
match goal with H : contains _ (poly_arr _ _) |- _ => move: H end.
rewrite ren_poly_type_many_poly_abs /=.
move=> /contains_poly_arrE [?] [?] [? ?]. subst.
match goal with H : many_poly_abs _ _ = subst_poly_type _ _ |- _ => move: H end.
rewrite ?poly_type_norm ?subst_poly_type_many_poly_abs /= ?iter_up_poly_type_poly_type.
move=> /many_poly_abs_eqE'' /(_ ltac:(done)) [?] [? ?]. subst.
do ? (simplify_poly_type_eqs; subst).
move: HM => /=.
set s := (s in pure_typing (s :: _) _ _).
set Gamma' := (Gamma' in pure_typing (s :: _ :: _ :: _ :: Gamma') _ _).
move=> /(pure_typing_ren_pure_term_allfv_pure_term (scons 0 (scons 0 (scons 0 (scons 0 S)))) (Delta := s :: Gamma')).
apply: unnest.
{ rewrite allfv_pure_term_ren_pure_term /=. apply: allfv_pure_term_TrueI. by case. }
rewrite renRen_pure_term /= ren_pure_term_id'; first by case. subst Gamma'.
have : pure_typing [poly_abba] (pure_var 0) (tidy s).
{
have Habba : [poly_abba] = map tidy [poly_abba] by done.
rewrite /s {s}.
rewrite Habba. apply: pure_typing_tidy_many_poly_abs_closed; first done.
rewrite Habba. apply: pure_typing_many_poly_abs_contains_tidy_closed; [done | by eassumption |].
rewrite Habba. apply: pure_typing_many_poly_abs_contains_tidy_closed; [done | by eassumption |].
set ξ := (ξ in ren_poly_type ξ _). rewrite tidy_ren_poly_type.
have ->: [poly_abba] = map (ren_poly_type ξ) [poly_abba] by done. apply: pure_typing_ren_poly_type.
rewrite Habba. apply: pure_typing_tidy_many_poly_abs_closed; first done.
rewrite /= tidy_many_poly_abs_le /=; first by lia.
rewrite tidy_many_poly_abs_le /=.
{ do ? (rewrite ?allfv_poly_type_many_poly_abs /=).
rewrite ?iter_scons ?iter_scons_ge; by lia. }
rewrite tidy_many_poly_abs_le /=; first by lia.
rewrite tidy_many_poly_abs_le /=.
{ do ? (rewrite ?allfv_poly_type_many_poly_abs /=).
rewrite ?iter_scons ?iter_scons_ge; by lia. }
rewrite tidy_many_poly_abs_le /=; first by lia.
rewrite tidy_many_poly_abs_le /=; first by lia.
apply: (pure_typing_pure_var 0); first done.
apply: contains_poly_abbaI; congr poly_var; by lia.
}
move=> /pure_typing_weaken_closed => /(_ []) H /pure_typing_tidyI /= /H{H} => /(_ ltac:(done)).
move=> /(pure_typing_ren_poly_type (Nat.pred)) /= /pure_typableI.
congr pure_typable. congr cons. rewrite ?map_map. apply: map_ext => ?.
by rewrite ?tidy_ren_poly_type tidy_tidy ?poly_type_norm ren_poly_type_id /=.
Qed.
Fixpoint trace_poly_type (e: nat) (t: poly_type) : pure_term :=
match t with
| poly_var x => pure_var x
| poly_arr s t => pure_app (pure_app (pure_var e) (trace_poly_type e t)) (trace_poly_type e s)
| poly_abs _ => pure_var 0
end.
Module pure_typable_intro_prenex_aux.
Lemma aux_pure_typing_gxs {Gamma x M n s} :
nth_error Gamma x = Some (poly_abs (poly_var 0)) ->
pure_typing Gamma M (Nat.iter n (fun s' : poly_type => poly_abs (poly_arr (poly_var 0) s')) s) ->
pure_typing Gamma (many_pure_app M (repeat (pure_var x) n)) (many_poly_abs n s).
Proof.
move=> Hx HM. apply: pure_typing_many_poly_absI.
elim: n s HM; first by (move=> >; rewrite map_ren_poly_type_id).
move=> n IH s.
rewrite (ltac:(lia) : S n = n + 1) repeat_app many_pure_app_app /= => HM.
apply: (pure_typing_pure_app_simpleI (s := poly_var 0)).
- have ->: map (ren_poly_type (Nat.add (n + 1))) Gamma =
map (ren_poly_type S) (map (ren_poly_type (Nat.add n)) Gamma).
{ rewrite ?map_map. apply: map_ext => ?. rewrite poly_type_norm /=. by apply: extRen_poly_type; lia. }
apply: (pure_typing_many_poly_absE (n := 1)). apply: IH.
move: HM. by rewrite -iter_plus.
- apply: (pure_typing_pure_var 0); first by rewrite ?nth_error_map Hx /=.
by apply /rt_step /contains_step_subst.
Qed.
Lemma aux_pure_typable_gys {Gamma x M n s} :
nth_error Gamma x = Some (poly_var 0) ->
pure_typing Gamma M (Nat.iter n (fun s' : poly_type => poly_abs (poly_arr (poly_var 0) s')) s) ->
pure_typable Gamma (many_pure_app M (repeat (pure_var x) n)).
Proof.
move=> Hx HM. exists (ren_poly_type (fun x => x - n) s). elim: n s HM.
{ move=> > /=. rewrite ren_poly_type_id'; by [|lia]. }
move=> n IH s. rewrite (ltac:(lia) : S n = n + 1) repeat_app many_pure_app_app /=.
rewrite -iter_plus /= => /IH /pure_typing_to_typing [?] [->] /=.
move=> /(typing_ty_app (t := poly_var 0)) /= /(typing_app (Q := var x)).
apply: unnest; first by apply: typing_var.
move=> /typing_to_pure_typing /=. congr pure_typing.
rewrite poly_type_norm ren_as_subst_poly_type /=. apply: ext_poly_type.
case; first done. move=> ?. congr poly_var. by lia.
Qed.
Lemma aux_pure_typing_N0 {s n Gamma e }:
is_simple s ->
allfv_poly_type (gt (n+e)) s ->
allfv_poly_type (fun x => nth_error Gamma x = Some (poly_var x)) (many_poly_abs n s) ->
nth_error Gamma e = Some poly_abba ->
pure_typing Gamma (many_pure_term_abs n (trace_poly_type (n+e) s))
(Nat.iter n (fun s' : poly_type => poly_abs (poly_arr (poly_var 0) s')) s).
Proof.
move=> Hs. elim: n Gamma e.
- move=> Gamma e /= _. elim: s Gamma Hs.
+ move=> /= *. by apply: pure_typing_pure_var_simpleI.
+ move=> s IHs t IHt Gamma /= [/IHs {}IHs /IHt {}IHt] [/IHs {}IHs /IHt {}IHt].
move=> /copy [He] /copy [/IHs {}IHs /IHt {}IHt].
apply: (pure_typing_pure_app_simpleI (s := s)); last done.
apply: (pure_typing_pure_app 0 (s := t)); rewrite ?map_ren_poly_type_id; last by apply: rt_refl.
* apply: (pure_typing_pure_var 0); [by rewrite nth_error_map He | ].
apply: rt_trans; apply: rt_step.
** by apply: contains_stepI.
** apply: contains_stepI. by rewrite /= poly_type_norm /= subst_poly_type_poly_var.
* done.
+ done.
- move=> n IH Gamma e /= H1ns H2ns He. apply: (pure_typing_pure_abs 1).
have ->: S (n + e) = n + S e by lia. apply: IH.
+ apply: allfv_poly_type_impl H1ns. by lia.
+ apply: allfv_poly_type_impl H2ns. case; first done.
move=> ? /=. by rewrite nth_error_map => ->.
+ by rewrite /= nth_error_map He.
Qed.
Lemma pure_typing_many_pure_term_absE {Gamma n M t}:
pure_typing Gamma (many_pure_term_abs n M) t ->
exists (nss : list (nat * poly_type)) t',
n = length nss /\
t = fold_right (fun '(n, s) r => many_poly_abs n (poly_arr s r)) t' nss /\
pure_typing (fold_left (fun Gamma '(n, s) => s :: map (ren_poly_type (Nat.add n)) Gamma) nss Gamma) M t'.
Proof.
elim: n Gamma t; first by move=> Gamma t /= HM; exists [], t.
move=> n IH Gamma t /= /pure_typingE [n1] [s1] [t1] [+] ->.
move=> /IH [nss] [t'] [->] [->] HM.
by exists ((n1, s1) :: nss), t'.
Qed.
Lemma pure_typing_fold_right_many_pure_app {Gamma x s' nss t M} :
nth_error Gamma x = Some
(fold_right (fun '(n, s) r => many_poly_abs n (poly_arr s r)) s' nss) ->
pure_typing
Gamma
(many_pure_app (pure_var x) (repeat M (length nss))) t ->
exists ns' ξ' nt' t',
t = many_poly_abs nt' t' /\
contains (many_poly_abs ns' (ren_poly_type ξ' s')) t'.
Proof.
rewrite -[Gamma in pure_typing Gamma _ _]map_ren_poly_type_id. move: (id) => ξ.
elim /rev_ind: nss Gamma ξ s' t.
- move=> Gamma ξ > Hx /= /pure_typingE [n1] [?] [?].
rewrite ?map_map nth_error_map Hx => [[[<-]]].
rewrite poly_type_norm /= => [[HC ->]].
exists 0. do 3 eexists. constructor; [by reflexivity | by eassumption].
- move=> [n s] nss IH /= Gamma ξ s' t.
rewrite fold_right_app /= => /IH {}IH.
rewrite app_length repeat_app many_pure_app_app /=.
move=> /pure_typingE [n1] [?] [?] [?] [+] [_] [H1C ?]. subst.
rewrite ?map_map. under map_ext => ? do rewrite poly_type_norm.
move=> /IH [n1s'] [n2s'] [nt'] [t'] []. case: nt'; last done. move=> /= ?. subst.
rewrite ren_poly_type_many_poly_abs many_poly_abs_many_poly_abs /=.
move=> /contains_poly_arrE [?] [?] [? ?]. subst.
move: H1C => /contains_subst_poly_type_fold_rightE.
clear=> ?. do 4 eexists. constructor; [by reflexivity | by eassumption].
Qed.
Lemma pure_typable_many_pure_app_repeat_poly_var {Gamma x y ny nss t} :
nth_error Gamma x = Some
(fold_right (fun '(n, s) r => many_poly_abs n (poly_arr s r)) t nss) ->
nth_error Gamma y = Some (poly_var ny) ->
pure_typable Gamma (many_pure_app (pure_var x) (repeat (pure_var y) (length nss))) ->
Forall (fun '(_, s) => exists n x, s = many_poly_abs n (poly_var (n + x))) nss.
Proof.
move=> + Hy. elim /rev_ind: nss t; first done.
move=> [n s] nss IH t. rewrite fold_right_app /= => Hx.
rewrite app_length repeat_app many_pure_app_app /=.
move=> /pure_typableE [?] [?] [].
move=> /copy [/pure_typableI /IH] /(_ _ Hx) Hnss.
move=> /(pure_typing_fold_right_many_pure_app Hx) [?] [?] [[|?]] [?] []; last done.
move=> /= ?. subst. rewrite ren_poly_type_many_poly_abs many_poly_abs_many_poly_abs /=.
move=> /contains_poly_arrE [?] [?] [? ?]. subst.
move=> /pure_typingE [?] [?] [?] [+] [+]. rewrite nth_error_map Hy => [[?]]. subst.
rewrite poly_type_norm. move=> /containsE <-.
move=> /esym /many_poly_abs_poly_var_eq_subst_poly_typeE [?] [?] [?] [? ->].
apply /Forall_app. constructor; first done.
constructor; last done. clear.
by do 2 eexists.
Qed.
Lemma pure_typing_trace_poly_typeE {s ns Gamma t n}:
is_simple s ->
allfv_poly_type (gt (length ns)) s ->
pure_typing
((map (fun x => poly_var (n + x)) ns) ++ poly_abba :: Gamma)
(trace_poly_type (length ns) s) t ->
ren_poly_type (fun x => n + nth x ns 0) s = tidy t.
Proof.
elim: s Gamma t n.
- move=> x Gamma t n _ /= ? /pure_typingE [n1] [?] [?].
rewrite ?nth_error_map nth_error_app1; first by rewrite map_length; lia.
rewrite nth_error_map.
have -> := nth_error_nth' ns 0; first by lia.
move: (nth x ns 0) => y [[?]] []. subst.
move=> /containsE ? ->. subst.
rewrite tidy_many_poly_abs_le /=; first by lia.
congr poly_var. by lia.
- move=> s1 IH1 s2 IH2 Gamma t n /= [/IH1 {}IH1 /IH2 {}IH2] [/IH1 {}IH1 /IH2 {}IH2].
move=> /pure_typingE [n1] [?] [?] [?] [+] [+] [H1C ?]. subst.
move=> /pure_typingE' [?] [?] [+] [+] H2C.
move=> /pure_typingE' [?] [+] H3C.
rewrite ?nth_error_map nth_error_app2; first by rewrite ?map_length; lia.
rewrite ?map_length (ltac:(lia) : length ns - length ns = 0) /=.
move=> [?]. subst. move: H3C => /(contains_poly_arrE (n := 2)) => - [[|r1 [|r2 [|? ?]]]] [] //=.
move=> _ [? ?]. subst. move: H2C => /containsE [? ?]. subst.
move: H1C => /containsE ?. subst.
rewrite ?map_app /= ?map_map /=.
under [map _ ns]map_ext => x do rewrite (ltac:(lia) : n1 + (n + x) = (n1 + n) + x).
move=> /IH2 {}IH2 /IH1 {}IH1. rewrite -tidy_many_poly_abs_tidy /= -IH1 -IH2.
rewrite tidy_many_poly_abs_le /=.
{ rewrite ?allfv_poly_type_ren_poly_type /=. constructor; apply: allfv_poly_type_TrueI; by lia. }
rewrite IH1 IH2 ?tidy_tidy -IH1 -IH2 ?poly_type_norm /=.
congr poly_arr; apply: extRen_poly_type; by lia.
- done.
Qed.
End pure_typable_intro_prenex_aux.
Import pure_typable_intro_prenex_aux.
Theorem pure_typable_intro_prenex M s n :
is_simple s -> allfv_poly_type (gt n) s ->
{ N |
forall Gamma,
pure_typable (map tidy (many_poly_abs n s :: Gamma)) M <->
pure_typable (map tidy Gamma) N }.
Proof.
move=> Hs Hns.
pose N0 := many_pure_term_abs n (trace_poly_type n s).
pose N1 := pure_abs (K' (many_pure_app (pure_var 0) (repeat (pure_var 2) n))
(many_pure_app (pure_var 0) (repeat (pure_var 3) n))).
pose N2 := pure_app (ren_pure_term (Nat.add 4) (pure_abs M)) (pure_app N1 N0).
have [N2_1 HN2_1]:= pure_typing_intro_poly_abba N2. have [N2_2 HN2_2] := pure_typable_intro_poly_bot N2_1. have [N2_3 HN2_3] := pure_typable_intro_poly_var_0 N2_2. exists N2_3 => Gamma. constructor.
- move=> [tM] HtM. apply /HN2_3 /HN2_2 /HN2_1 => {HN2_3 HN2_2 HN2_1}.
eexists. apply: (pure_typing_pure_app_simpleI (s := tidy (many_poly_abs n s))).
+ move=> /=. apply: pure_typing_pure_abs_simpleI.
move: HtM => /(pure_typing_ren_poly_type S) HtM.
apply: pure_typing_ren_pure_term; first by eassumption. case.
* move=> ? /= <-. rewrite -tidy_ren_poly_type. congr Some. congr tidy.
rewrite ren_poly_type_allfv_id ?allfv_poly_type_many_poly_abs; last done.
apply: allfv_poly_type_impl Hns => ? ?. rewrite iter_scons_lt; by [lia |].
* move=> ? ? /= <-. congr nth_error. rewrite ?map_map.
apply: map_ext => ?. by rewrite tidy_ren_poly_type.
+ apply: (pure_typing_pure_app_simpleI
(s := tidy (Nat.iter n (fun s' => poly_abs (poly_arr (poly_var 0) s')) s))).
* rewrite -/(tidy (poly_arr _ _)). apply: pure_typing_tidyI.
apply: pure_typing_pure_abs_simpleI. apply: pure_typing_K'I.
** apply: aux_pure_typing_gxs; [done | by apply: pure_typing_pure_var_simpleI].
** apply: aux_pure_typable_gys; [done | by apply: pure_typing_pure_var_simpleI].
* apply: pure_typing_tidyI. rewrite /N0.
have ->: trace_poly_type n = trace_poly_type (n+0) by congr trace_poly_type; lia.
apply: aux_pure_typing_N0; [done | by apply: allfv_poly_type_impl Hns; lia | | done].
rewrite allfv_poly_type_many_poly_abs. apply: allfv_poly_type_impl Hns.
move=> ? ?. rewrite iter_scons_lt; by [lia|].
- move /HN2_3 /HN2_2 /HN2_1 => {HN2_3 HN2_2 HN2_1}.
rewrite /N2 /N1 /N0 /= => {N2_3 N2_2 N2_1}.
move=> /pure_typableE [?] [?] [].
move=> /pure_typingE' HM.
move=> /pure_typingE [n3] [?] [?] [?] [+] [+] [H2C ?]. subst.
move=> /pure_typingE'.
move=> /pure_typing_K'E [HN1_1] HN1_2.
move=> /pure_typing_many_pure_term_absE [nss] [?] [?] [?]. subst.
move: HN1_2 => /pure_typable_many_pure_app_repeat_poly_var.
evar (r : poly_type) => /(_ (n3 + 0) r). apply: unnest; first by subst r.
apply: unnest; first done.
move=> Hnss. set Gamma' := (Gamma' in pure_typing Gamma' _ _).
have : exists ss Gamma'', length ss = length nss /\
Gamma' = ss ++ poly_abba :: Gamma'' /\
Forall (fun 's => exists n x, s = many_poly_abs n (poly_var (n + x))) ss.
{
rewrite /Gamma'. elim /rev_ind: (nss) Hnss; first by move=> ?; exists []; eexists.
clear=> [[n s]] nss IH /Forall_app [/IH] {}IH /Forall_cons_iff [[n0] [x0] ->] _.
rewrite fold_left_app app_length.
move: IH => [ss] [Gamma''] [<-] /= [->] Hss.
eexists (_ :: map (ren_poly_type (Nat.add n)) ss), (map (ren_poly_type (Nat.add n)) Gamma'').
rewrite /= map_length map_app /= Forall_cons_iff Forall_map.
constructor; first by lia.
constructor; first done.
constructor; first by do 2 eexists.
apply: Forall_impl Hss => ? [?] [? ->]. rewrite ren_poly_type_many_poly_abs /= iter_up_ren.
by do 2 eexists.
}
move=> [ss] [?] [H1ss] [-> {Gamma'}] H2ss. rewrite -H1ss.
move=> /pure_typing_tidyI. rewrite map_app /=.
have [ns [H1ns H2ns]] : exists ns, length ss = length ns /\ map tidy ss = map poly_var ns.
{
elim: (ss) H2ss; first by move=> _; exists [].
clear=> s ss IH /Forall_cons_iff [] [?] [n] -> /IH [ns] /= [-> ->].
exists (n :: ns). constructor; first done.
rewrite tidy_many_poly_abs_le /=; first by lia.
congr cons. congr poly_var. by lia.
}
rewrite H1ns H2ns. move=> /(pure_typing_trace_poly_typeE (n := 0)).
rewrite -H1ns H1ss tidy_tidy => /(_ ltac:(done) ltac:(done)).
move: HN1_1 => /pure_typing_fold_right_many_pure_app /= => /(_ _ ltac:(done)).
move=> [n6] [ξs] [n7] [?] [? H3C]. subst.
move=> H2s. move: HM => /=.
set s0 := (s0 in pure_typing (s0 :: _) _ _).
set Gamma0 := (Gamma0 in pure_typing (s0 :: _ :: _ :: _ :: _ :: Gamma0) _ _).
move=> /(pure_typing_ren_pure_term_allfv_pure_term (scons 0 (scons 0 (scons 0 (scons 0 (scons 0 S))))) (Delta := s0 :: Gamma0)).
apply: unnest.
{ rewrite allfv_pure_term_ren_pure_term /=. apply: allfv_pure_term_TrueI. by case. }
rewrite renRen_pure_term /= ren_pure_term_id'; first by case. subst Gamma0.
have H4s : allfv_poly_type (fun=> False) (tidy (many_poly_abs (length nss) s)).
{
rewrite allfv_poly_type_tidy allfv_poly_type_many_poly_abs.
apply: allfv_poly_type_impl Hns => ? ?. rewrite iter_scons_lt; by [|lia].
}
have : pure_typing [tidy (many_poly_abs (length nss) s)] (pure_var 0) (tidy s0).
{
have H3s : [tidy (many_poly_abs (length nss) s)] = map tidy [tidy (many_poly_abs (length nss) s)]
by rewrite /= tidy_tidy.
rewrite /s0 {s0}.
rewrite H3s. apply: pure_typing_tidy_many_poly_abs_closed; first done.
rewrite H3s. apply: pure_typing_many_poly_abs_contains_tidy_closed; [done | by eassumption |].
rewrite H3s. apply: pure_typing_many_poly_abs_contains_tidy_closed; [done | by eassumption |].
rewrite tidy_ren_poly_type -H2s ?poly_type_norm /=.
rewrite -[s in ren_poly_type _ s](tidy_is_simple Hs) -tidy_ren_poly_type -/(map tidy [_]).
apply: pure_typing_tidyI. apply: (pure_typing_pure_var 0); first done.
rewrite ren_poly_type_id ren_as_subst_poly_type. by apply: contains_many_poly_abs_closedI.
}
move=> /pure_typing_weaken_closed => /(_ []) H /pure_typing_tidyI /= /H{H} => /(_ ltac:(done)).
move=> /(pure_typing_ren_poly_type (fun x => x - 1)) /= /pure_typableI.
congr pure_typable. congr cons.
+ rewrite ren_poly_type_allfv_id; last done. by apply: allfv_poly_type_impl H4s.
+ rewrite ?map_map. apply: map_ext => ?.
rewrite ?tidy_ren_poly_type tidy_tidy ?poly_type_norm /=.
apply: ren_poly_type_id'. by lia.
Qed.