Require Import Undecidability.SystemF.SysF Undecidability.SystemF.Autosubst.syntax Undecidability.SystemF.Autosubst.unscoped.
Import UnscopedNotations.
Require Import Undecidability.SystemF.Util.typing_facts Undecidability.SystemF.Util.term_facts.
Inductive step : term -> term -> Prop :=
| step_beta s P Q :
step (app (abs s P) Q) (subst_term poly_var (scons Q var) P)
| step_ty_beta P s :
step (ty_app (ty_abs P) s) (subst_term (scons s poly_var) var P)
| step_appL P P' Q :
step P P' -> step (app P Q) (app P' Q)
| step_appR P P' Q :
step P P' -> step (app Q P) (app Q P')
| step_ty_app P P' s :
step P P' -> step (ty_app P s) (ty_app P' s)
| step_lam s P P' :
step P P' -> step (abs s P) (abs s P')
| step_ty_lam P P' :
step P P' -> step (ty_abs P) (ty_abs P').
Inductive sn x : Prop :=
| SNI : (forall y, step x y -> sn y) -> sn x.
Local Hint Constructors step normal_form head_form : core.
Require Import Coq.Relations.Relation_Operators.
Ltac inv_step :=
match goal with
[ H : step ?P ?Q |- _] => inversion H; subst; clear H; try now firstorder
end.
Lemma progress P :
(forall Q, ~ step P Q) \/ exists Q, step P Q.
Proof.
induction P.
- firstorder inv_step.
- destruct IHP1 as [H1 | [Q1 H1]]; eauto.
destruct IHP2 as [H2 | [Q2 H2]]; eauto.
destruct P1. 3:eauto.
all: firstorder inv_step.
- destruct IHP as [H1 | [Q1 H1]]; eauto. firstorder inv_step.
- destruct IHP as [H1 | [Q1 H1]]; eauto.
destruct P. 5:eauto.
all: firstorder inv_step.
- destruct IHP as [H1 | [Q1 H1]]; eauto. firstorder inv_step.
Qed.
Lemma preservation P Q Γ s :
typing Γ P s -> step P Q -> typing Γ Q s.
Proof.
induction 1 in Q |- *.
- inversion 1.
- inversion 1; subst.
+ inversion H; subst.
eapply typing_subst_term. eassumption.
intros [] ? [=]; subst; cbn;
eauto using typing.
+ eauto using typing.
+ eauto using typing.
- inversion 1; subst. eauto using typing.
- inversion 1; subst.
+ inversion H; subst.
evar (Gamma' : environment).
replace Gamma with Gamma'. all: subst Gamma'.
eapply typing_subst_poly_type. eassumption.
erewrite List.map_map, List.map_ext, List.map_id.
reflexivity. intros. now asimpl.
+ eauto using typing.
- inversion 1; subst. eauto using typing.
Qed.
Lemma preservation_star P Q Γ s :
typing Γ P s -> Relation_Operators.clos_refl_trans term step P Q -> typing Γ Q s.
Proof.
intros H. induction 1; eauto using preservation.
Qed.
Lemma step_ext_2 P Q1 Q2 :
step P Q1 -> Q1 = Q2 -> step P Q2.
Proof.
now intros ? ->.
Qed.
Ltac now_asimpl := asimpl; ( (reflexivity || eapply ext_term; now intros []; repeat asimpl) ||
f_equal; (reflexivity || eapply ext_term; now intros []; repeat asimpl)).
Lemma step_subst P Q σ τ :
step P Q -> step (subst_term σ τ P) (subst_term σ τ Q).
Proof.
induction 1 in σ, τ |- *; cbn; asimpl; eauto using step.
- eapply step_ext_2.
econstructor. now_asimpl.
- eapply step_ext_2.
econstructor. now_asimpl.
Qed.
Require Import Coq.Program.Equality.
Ltac inv H := inversion H; subst; clear H.
Lemma step_subst_inv P Q σ τ :
step (subst_term σ (τ >> var) P) Q -> exists P', step P P' /\ subst_term σ (τ >> var) P' = Q.
Proof with eexists; split; [eauto | now_asimpl].
intros H. dependent induction H; rename x into Eqn.
- destruct P; inv Eqn. destruct P1; inv H0...
- destruct P; inv Eqn. destruct P; inv H0...
- destruct P; inv Eqn. destruct (IHstep _ _ _ eq_refl) as (P1' & H1 & <-)...
- destruct P; inv Eqn. destruct (IHstep _ _ _ eq_refl) as (P1' & H1 & <-)...
- destruct P; inv Eqn. destruct (IHstep _ _ _ eq_refl) as (P1' & H1 & <-)...
- destruct P; inv Eqn.
edestruct (IHstep P (up_term_poly_type σ) (0 .: τ >> shift)) as (P1' & H1 & <-).
now_asimpl. exists (abs p P1'). split. eauto. now_asimpl.
- destruct P; inv Eqn. destruct (IHstep _ _ _ eq_refl) as (P1' & H1 & <-)...
Qed.
Definition nf P := match P with abs s P => normal_form P
| ty_abs P => normal_form P | P => head_form P end.
Lemma nf_normal_form P :
nf P -> normal_form P.
Proof.
destruct P; cbn; eauto.
Qed.
Lemma sn_normal_form Γ P s :
typing Γ P s -> (forall Q, ~ step P Q) -> nf P.
Proof.
intros H Hstep.
induction H; cbn in *.
- eauto.
- econstructor.
destruct P.
all: try now (eapply IHtyping1; intros ? ?; eapply Hstep; eauto).
+ exfalso. eapply Hstep; eauto.
+ inversion H.
+ eapply nf_normal_form, IHtyping2. intros ? ?; eapply Hstep; eauto.
- eapply nf_normal_form, IHtyping. intros ? ?. eapply Hstep. eauto.
- econstructor.
destruct P.
all: try now (eapply IHtyping; intros ? ?; eapply Hstep; eauto).
+ inversion H.
+ exfalso. eapply Hstep. eauto.
- eapply nf_normal_form, IHtyping. intros ? ?. eapply Hstep. eauto.
Qed.
Lemma sn_normal Γ P s :
typing Γ P s ->
sn P -> exists Q, clos_refl_trans _ step P Q /\ normal_form Q.
Proof.
intros H.
induction 1 as [P Hsn IH] in s, H |- *.
destruct (progress P) as [Hstep | [Q Hstep]].
- exists P. split. econstructor 2.
eauto using nf_normal_form, sn_normal_form.
- pose proof (Hstep' := Hstep).
eapply IH in Hstep as (Q' & H1 & H2).
+ exists Q'. split. econstructor 3. econstructor 1. all: eauto.
+ eauto using preservation.
Qed.
Import UnscopedNotations.
Require Import Undecidability.SystemF.Util.typing_facts Undecidability.SystemF.Util.term_facts.
Inductive step : term -> term -> Prop :=
| step_beta s P Q :
step (app (abs s P) Q) (subst_term poly_var (scons Q var) P)
| step_ty_beta P s :
step (ty_app (ty_abs P) s) (subst_term (scons s poly_var) var P)
| step_appL P P' Q :
step P P' -> step (app P Q) (app P' Q)
| step_appR P P' Q :
step P P' -> step (app Q P) (app Q P')
| step_ty_app P P' s :
step P P' -> step (ty_app P s) (ty_app P' s)
| step_lam s P P' :
step P P' -> step (abs s P) (abs s P')
| step_ty_lam P P' :
step P P' -> step (ty_abs P) (ty_abs P').
Inductive sn x : Prop :=
| SNI : (forall y, step x y -> sn y) -> sn x.
Local Hint Constructors step normal_form head_form : core.
Require Import Coq.Relations.Relation_Operators.
Ltac inv_step :=
match goal with
[ H : step ?P ?Q |- _] => inversion H; subst; clear H; try now firstorder
end.
Lemma progress P :
(forall Q, ~ step P Q) \/ exists Q, step P Q.
Proof.
induction P.
- firstorder inv_step.
- destruct IHP1 as [H1 | [Q1 H1]]; eauto.
destruct IHP2 as [H2 | [Q2 H2]]; eauto.
destruct P1. 3:eauto.
all: firstorder inv_step.
- destruct IHP as [H1 | [Q1 H1]]; eauto. firstorder inv_step.
- destruct IHP as [H1 | [Q1 H1]]; eauto.
destruct P. 5:eauto.
all: firstorder inv_step.
- destruct IHP as [H1 | [Q1 H1]]; eauto. firstorder inv_step.
Qed.
Lemma preservation P Q Γ s :
typing Γ P s -> step P Q -> typing Γ Q s.
Proof.
induction 1 in Q |- *.
- inversion 1.
- inversion 1; subst.
+ inversion H; subst.
eapply typing_subst_term. eassumption.
intros [] ? [=]; subst; cbn;
eauto using typing.
+ eauto using typing.
+ eauto using typing.
- inversion 1; subst. eauto using typing.
- inversion 1; subst.
+ inversion H; subst.
evar (Gamma' : environment).
replace Gamma with Gamma'. all: subst Gamma'.
eapply typing_subst_poly_type. eassumption.
erewrite List.map_map, List.map_ext, List.map_id.
reflexivity. intros. now asimpl.
+ eauto using typing.
- inversion 1; subst. eauto using typing.
Qed.
Lemma preservation_star P Q Γ s :
typing Γ P s -> Relation_Operators.clos_refl_trans term step P Q -> typing Γ Q s.
Proof.
intros H. induction 1; eauto using preservation.
Qed.
Lemma step_ext_2 P Q1 Q2 :
step P Q1 -> Q1 = Q2 -> step P Q2.
Proof.
now intros ? ->.
Qed.
Ltac now_asimpl := asimpl; ( (reflexivity || eapply ext_term; now intros []; repeat asimpl) ||
f_equal; (reflexivity || eapply ext_term; now intros []; repeat asimpl)).
Lemma step_subst P Q σ τ :
step P Q -> step (subst_term σ τ P) (subst_term σ τ Q).
Proof.
induction 1 in σ, τ |- *; cbn; asimpl; eauto using step.
- eapply step_ext_2.
econstructor. now_asimpl.
- eapply step_ext_2.
econstructor. now_asimpl.
Qed.
Require Import Coq.Program.Equality.
Ltac inv H := inversion H; subst; clear H.
Lemma step_subst_inv P Q σ τ :
step (subst_term σ (τ >> var) P) Q -> exists P', step P P' /\ subst_term σ (τ >> var) P' = Q.
Proof with eexists; split; [eauto | now_asimpl].
intros H. dependent induction H; rename x into Eqn.
- destruct P; inv Eqn. destruct P1; inv H0...
- destruct P; inv Eqn. destruct P; inv H0...
- destruct P; inv Eqn. destruct (IHstep _ _ _ eq_refl) as (P1' & H1 & <-)...
- destruct P; inv Eqn. destruct (IHstep _ _ _ eq_refl) as (P1' & H1 & <-)...
- destruct P; inv Eqn. destruct (IHstep _ _ _ eq_refl) as (P1' & H1 & <-)...
- destruct P; inv Eqn.
edestruct (IHstep P (up_term_poly_type σ) (0 .: τ >> shift)) as (P1' & H1 & <-).
now_asimpl. exists (abs p P1'). split. eauto. now_asimpl.
- destruct P; inv Eqn. destruct (IHstep _ _ _ eq_refl) as (P1' & H1 & <-)...
Qed.
Definition nf P := match P with abs s P => normal_form P
| ty_abs P => normal_form P | P => head_form P end.
Lemma nf_normal_form P :
nf P -> normal_form P.
Proof.
destruct P; cbn; eauto.
Qed.
Lemma sn_normal_form Γ P s :
typing Γ P s -> (forall Q, ~ step P Q) -> nf P.
Proof.
intros H Hstep.
induction H; cbn in *.
- eauto.
- econstructor.
destruct P.
all: try now (eapply IHtyping1; intros ? ?; eapply Hstep; eauto).
+ exfalso. eapply Hstep; eauto.
+ inversion H.
+ eapply nf_normal_form, IHtyping2. intros ? ?; eapply Hstep; eauto.
- eapply nf_normal_form, IHtyping. intros ? ?. eapply Hstep. eauto.
- econstructor.
destruct P.
all: try now (eapply IHtyping; intros ? ?; eapply Hstep; eauto).
+ inversion H.
+ exfalso. eapply Hstep. eauto.
- eapply nf_normal_form, IHtyping. intros ? ?. eapply Hstep. eauto.
Qed.
Lemma sn_normal Γ P s :
typing Γ P s ->
sn P -> exists Q, clos_refl_trans _ step P Q /\ normal_form Q.
Proof.
intros H.
induction 1 as [P Hsn IH] in s, H |- *.
destruct (progress P) as [Hstep | [Q Hstep]].
- exists P. split. econstructor 2.
eauto using nf_normal_form, sn_normal_form.
- pose proof (Hstep' := Hstep).
eapply IH in Hstep as (Q' & H1 & H2).
+ exists Q'. split. econstructor 3. econstructor 1. all: eauto.
+ eauto using preservation.
Qed.