From Undecidability.TM Require Import ProgrammingTools.
From Undecidability Require Import CaseNat CaseList CaseSum.
Local Arguments skipn { A } !n !l.
Local Arguments plus : simpl never.
Local Arguments mult : simpl never.
Local Arguments Encode_list : simpl never.
Local Arguments Encode_nat : simpl never.
Set Default Proof Using "Type".
Section Lenght.
Variable sig sigX : finType.
Variable (X : Type) (cX : codable sigX X).
Variable (retr1 : Retract (sigList sigX) sig) (retr2 : Retract sigNat sig).
Local Instance retr_X_list' : Retract sigX sig := ComposeRetract retr1 (Retract_sigList_X _).
Definition Length_Step : pTM sig^+ (option unit) 3 :=
If (LiftTapes (ChangeAlphabet (CaseList _) _) [|Fin0; Fin2|])
(Return (LiftTapes (Reset _) [|Fin2|];;
LiftTapes (ChangeAlphabet (Constr_S) _) [|Fin1|])
(None))
(Return Nop (Some tt))
.
Definition Length_Step_size {sigX X : Type} {cX : codable sigX X} (x : X) : Vector.t (nat -> nat) 3 :=
[| CaseList_size0 x; pred; CaseList_size1 x >> Reset_size x|].
Definition Length_Step_Rel : pRel sig^+ (option unit) 3 :=
fun tin '(yout, tout) =>
forall (xs : list X) (n : nat) (s0 s1 s2 : nat),
tin[@Fin0] ≃(;s0) xs ->
tin[@Fin1] ≃(;s1) n ->
isVoid_size tin[@Fin2] s2 ->
match yout, xs with
| (Some tt), nil =>
tout[@Fin0] ≃(;s0) xs /\
tout[@Fin1] ≃(;s1) n /\
isVoid_size tout[@Fin2] s2
| None, x :: xs' =>
tout[@Fin0] ≃(; (Length_Step_size x)[@Fin0]s0) xs' /\
tout[@Fin1] ≃(; (Length_Step_size x)[@Fin1]s1) S n /\
isVoid_size tout[@Fin2] ((Length_Step_size x)[@Fin2]s2)
| _, _ => False
end.
Lemma Length_Step_Realise : Length_Step ⊨ Length_Step_Rel.
Proof.
eapply Realise_monotone.
{ unfold Length_Step. TM_Correct. }
{
intros tin (yout, tout) H. cbn. intros xs n s0 s1 s2 HEncXS HEncN HRight.
destruct H; TMSimp.
{ rename H into HCaseList, H1 into HReset, H3 into HS.
modpon HCaseList. destruct xs as [ | x xs']; cbn in *; auto; modpon HCaseList.
modpon HReset.
modpon HS. repeat split; auto.
}
{ rename H into HCaseList.
modpon HCaseList. destruct xs as [ | x xs']; cbn in *; auto; modpon HCaseList. repeat split; auto.
}
}
Qed.
Definition Length_Step_steps {sigX X : Type} {cX : codable sigX X} (xs : list X) :=
match xs with
| nil => 1 + CaseList_steps_nil
| x :: xs' => 2 + CaseList_steps_cons x + Reset_steps x + Constr_S_steps
end.
Definition Length_Step_T : tRel sig^+ 3 :=
fun tin k => exists (xs : list X) (n : nat), tin[@Fin0] ≃ xs /\ tin[@Fin1] ≃ n /\ isVoid tin[@Fin2] /\ Length_Step_steps xs <= k.
Lemma Length_Step_Terminates : projT1 Length_Step ↓ Length_Step_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold Length_Step. TM_Correct.
}
{
intros tin k (xs&n&HEncXs&HEncN&HRight2&Hk). unfold Length_Step_steps in Hk.
destruct xs as [ | x xs'].
- exists CaseList_steps_nil, 0. repeat split; cbn in *; try lia.
eexists; repeat split; simpl_surject; eauto; cbn; eauto.
intros tmid b (HCaseList&HInjCaseList); TMSimp. modpon HCaseList. destruct b; cbn in *; auto.
- exists (CaseList_steps_cons x), (1 + Reset_steps x + Constr_S_steps). repeat split; cbn in *; try lia.
eexists; repeat split; simpl_surject; eauto; cbn; eauto.
intros tmid b (HCaseList&HInjCaseList); TMSimp. modpon HCaseList. destruct b; cbn in *; auto; modpon HCaseList.
exists (Reset_steps x), Constr_S_steps. repeat split; cbn; try lia.
eexists; repeat split; simpl_surject; eauto; cbn; eauto.
}
Unshelve. 3:try eassumption. exact _.
Qed.
Definition Length_Loop := While Length_Step.
Fixpoint Length_Loop_size {sigX X : Type} {cX : codable sigX X} (xs : list X) : Vector.t (nat->nat) 3 :=
match xs with
| nil => [|id;id;id|]
| x :: xs' => Length_Step_size x >>> Length_Loop_size xs'
end.
Definition Length_Loop_Rel : pRel sig^+ unit 3 :=
ignoreParam (
fun tin tout =>
forall (xs : list X) (n : nat) (s0 s1 s2:nat),
tin[@Fin0] ≃(;s0) xs ->
tin[@Fin1] ≃(;s1) n ->
isVoid_size tin[@Fin2] s2 ->
tout[@Fin0] ≃(; (Length_Loop_size xs)[@Fin0]s0) @nil X /\
tout[@Fin1] ≃(; (Length_Loop_size xs)[@Fin1]s1) n + length xs /\
isVoid_size tout[@Fin2] ((Length_Loop_size xs)[@Fin2]s2)
).
Lemma Length_Loop_Realise : Length_Loop ⊨ Length_Loop_Rel.
Proof.
eapply Realise_monotone.
{ unfold Length_Loop. TM_Correct.
- apply Length_Step_Realise.
}
{
apply WhileInduction; intros; intros xs n s0 s1 s2 HEncXS HEncN HRight; TMSimp.
{
modpon HLastStep.
destruct xs as [ | x xs']; auto; TMSimp.
cbn. rewrite Nat.add_0_r. repeat split; auto.
}
{
modpon HStar.
destruct xs as [ | x xs']; auto; TMSimp.
modpon HLastStep.
rewrite Nat.add_succ_r.
repeat split; auto.
}
}
Qed.
Fixpoint Length_Loop_steps {sigX X : Type} {cX : codable sigX X} (xs : list X) : nat :=
match xs with
| nil => Length_Step_steps xs
| x :: xs' => S (Length_Step_steps xs) + Length_Loop_steps xs'
end.
Definition Length_Loop_T : tRel sig^+ 3 :=
fun tin k => exists (xs : list X) (n : nat), tin[@Fin0] ≃ xs /\ tin[@Fin1] ≃ n /\ isVoid tin[@Fin2] /\ Length_Loop_steps xs <= k.
Lemma Length_Loop_Terminates : projT1 Length_Loop ↓ Length_Loop_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold Length_Loop. TM_Correct.
- apply Length_Step_Realise.
- apply Length_Step_Terminates. }
{
apply WhileCoInduction. intros tin k (xs&n&HEncXs&HEncN&HRight2&Hk). exists (Length_Step_steps xs). repeat split.
- hnf. do 2 eexists. repeat split; eauto.
- intros b tmid HStep. hnf in HStep. modpon HStep. destruct b as [ () | ], xs as [ | x xs']; cbn in *; auto; modpon HStep.
eexists (Length_Loop_steps xs'). repeat split; try lia. hnf. exists xs', (S n). repeat split; eauto.
}
Qed.
Definition Length : pTM sig^+ unit 4 :=
LiftTapes (CopyValue _) [|Fin0; Fin3|];;
LiftTapes (ChangeAlphabet Constr_O _) [|Fin1|];;
LiftTapes (Length_Loop) [|Fin3; Fin1; Fin2|];;
LiftTapes (ResetEmpty1 _) [|Fin3|].
Definition Length_size {sigX X : Type} {cX : codable sigX X} (xs : list X) : Vector.t (nat->nat) 4 :=
[|id;
Constr_O_size >> (Length_Loop_size xs)[@Fin1];
(Length_Loop_size xs)[@Fin2];
CopyValue_size xs >> (Length_Loop_size xs)[@Fin0] >> Reset_size (@nil X)
|].
Definition Length_Rel : pRel sig^+ unit 4 :=
ignoreParam (
fun tin tout =>
forall (xs : list X) (s0 s1 s2 s3 : nat),
tin[@Fin0] ≃(;s0) xs ->
isVoid_size tin[@Fin1] s1 ->
isVoid_size tin[@Fin2] s2 ->
isVoid_size tin[@Fin3] s3 ->
tout[@Fin0] ≃(; (Length_size xs)[@Fin0]s0) xs /\
tout[@Fin1] ≃(; (Length_size xs)[@Fin1]s1) length xs /\
isVoid_size tout[@Fin2] ((Length_size xs)[@Fin2]s2) /\
isVoid_size tout[@Fin3] ((Length_size xs)[@Fin3]s3)
).
Lemma Length_Computes : Length ⊨ Length_Rel.
Proof.
eapply Realise_monotone.
{ unfold Length. TM_Correct.
- apply Length_Loop_Realise.
- eapply RealiseIn_Realise. apply ResetEmpty1_Sem with (X := list X).
}
{
intros tin ((), tout) H. intros xs s0 s1 s2 s3 HEncXs Hout HInt2 HInt3.
TMSimp. modpon H. modpon H0. modpon H2. modpon H4.
repeat split; auto.
}
Qed.
Definition Length_steps {sigX X : Type} {cX : codable sigX X} (xs : list X) := 36 + 12 * size xs + Length_Loop_steps xs.
Definition Length_T : tRel sig^+ 4 :=
fun tin k => exists (xs : list X), tin[@Fin0] ≃ xs /\ isVoid tin[@Fin1] /\ isVoid tin[@Fin2] /\ isVoid tin[@Fin3] /\ Length_steps xs <= k.
Lemma Length_Terminates : projT1 Length ↓ Length_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold Length. TM_Correct.
- apply Length_Loop_Realise.
- apply Length_Loop_Terminates.
- eapply RealiseIn_TerminatesIn. eapply ResetEmpty1_Sem.
}
{
intros tin k (xs&HEncXs&HRight1&HRight2&HRigth3&Hk). unfold Length_steps in *.
exists (25 + 12 * size xs), (10 + Length_Loop_steps xs). repeat split; cbn; try lia.
eexists. repeat split; eauto. unfold CopyValue_steps.
intros tmid () (HO&HOInj); TMSimp. modpon HO.
exists 5, (4 + Length_Loop_steps xs). unfold Constr_O_steps. repeat split; cbn; try lia.
intros tmid0_ () (HLoop&HLoopInj); TMSimp. modpon HLoop.
exists (Length_Loop_steps xs), 3. repeat split; cbn; try lia.
hnf. cbn. do 2 eexists. repeat split; eauto.
now intros _ _ _.
}
Unshelve. 3:eassumption. 2: exact _.
Qed.
End Lenght.
Arguments Length_steps {sigX X cX} : simpl never.
Arguments Length_size {sigX X cX} : simpl never.
From Undecidability.L.Complexity Require Import UpToC.
Section Length_steps_nice.
Variable (sigX X : Type) (cX : codable sigX X).
Lemma Length_Loop_steps_nice :
Length_Loop_steps <=c size (X:=list X).
Proof.
evar (c:nat). exists (1+max CaseList_steps_nil c). setoid_rewrite Encode_list_hasSize.
induction x. all:cbn. nia.
rewrite IHx. ring_simplify.
set (c1:=Init.Nat.max CaseList_steps_nil c * Encode_list_size cX x).
set (c2:=Encode_list_size cX x).
unfold Reset_steps,CaseList_steps_cons.
unify ?c (24+16+8+4+ Constr_S_steps +2). nia.
Qed.
Lemma Length_steps_nice :
Length_steps <=c size (X:=list X).
Proof.
unfold Length_steps. smpl_upToC.
-apply upToC_le. setoid_rewrite (Encode_list_hasSize cX). apply Encode_list_hasSize_ge1.
-upToC_le_solve.
-apply Length_Loop_steps_nice.
Qed.
End Length_steps_nice.
From Undecidability Require Import CaseNat CaseList CaseSum.
Local Arguments skipn { A } !n !l.
Local Arguments plus : simpl never.
Local Arguments mult : simpl never.
Local Arguments Encode_list : simpl never.
Local Arguments Encode_nat : simpl never.
Set Default Proof Using "Type".
Section Lenght.
Variable sig sigX : finType.
Variable (X : Type) (cX : codable sigX X).
Variable (retr1 : Retract (sigList sigX) sig) (retr2 : Retract sigNat sig).
Local Instance retr_X_list' : Retract sigX sig := ComposeRetract retr1 (Retract_sigList_X _).
Definition Length_Step : pTM sig^+ (option unit) 3 :=
If (LiftTapes (ChangeAlphabet (CaseList _) _) [|Fin0; Fin2|])
(Return (LiftTapes (Reset _) [|Fin2|];;
LiftTapes (ChangeAlphabet (Constr_S) _) [|Fin1|])
(None))
(Return Nop (Some tt))
.
Definition Length_Step_size {sigX X : Type} {cX : codable sigX X} (x : X) : Vector.t (nat -> nat) 3 :=
[| CaseList_size0 x; pred; CaseList_size1 x >> Reset_size x|].
Definition Length_Step_Rel : pRel sig^+ (option unit) 3 :=
fun tin '(yout, tout) =>
forall (xs : list X) (n : nat) (s0 s1 s2 : nat),
tin[@Fin0] ≃(;s0) xs ->
tin[@Fin1] ≃(;s1) n ->
isVoid_size tin[@Fin2] s2 ->
match yout, xs with
| (Some tt), nil =>
tout[@Fin0] ≃(;s0) xs /\
tout[@Fin1] ≃(;s1) n /\
isVoid_size tout[@Fin2] s2
| None, x :: xs' =>
tout[@Fin0] ≃(; (Length_Step_size x)[@Fin0]s0) xs' /\
tout[@Fin1] ≃(; (Length_Step_size x)[@Fin1]s1) S n /\
isVoid_size tout[@Fin2] ((Length_Step_size x)[@Fin2]s2)
| _, _ => False
end.
Lemma Length_Step_Realise : Length_Step ⊨ Length_Step_Rel.
Proof.
eapply Realise_monotone.
{ unfold Length_Step. TM_Correct. }
{
intros tin (yout, tout) H. cbn. intros xs n s0 s1 s2 HEncXS HEncN HRight.
destruct H; TMSimp.
{ rename H into HCaseList, H1 into HReset, H3 into HS.
modpon HCaseList. destruct xs as [ | x xs']; cbn in *; auto; modpon HCaseList.
modpon HReset.
modpon HS. repeat split; auto.
}
{ rename H into HCaseList.
modpon HCaseList. destruct xs as [ | x xs']; cbn in *; auto; modpon HCaseList. repeat split; auto.
}
}
Qed.
Definition Length_Step_steps {sigX X : Type} {cX : codable sigX X} (xs : list X) :=
match xs with
| nil => 1 + CaseList_steps_nil
| x :: xs' => 2 + CaseList_steps_cons x + Reset_steps x + Constr_S_steps
end.
Definition Length_Step_T : tRel sig^+ 3 :=
fun tin k => exists (xs : list X) (n : nat), tin[@Fin0] ≃ xs /\ tin[@Fin1] ≃ n /\ isVoid tin[@Fin2] /\ Length_Step_steps xs <= k.
Lemma Length_Step_Terminates : projT1 Length_Step ↓ Length_Step_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold Length_Step. TM_Correct.
}
{
intros tin k (xs&n&HEncXs&HEncN&HRight2&Hk). unfold Length_Step_steps in Hk.
destruct xs as [ | x xs'].
- exists CaseList_steps_nil, 0. repeat split; cbn in *; try lia.
eexists; repeat split; simpl_surject; eauto; cbn; eauto.
intros tmid b (HCaseList&HInjCaseList); TMSimp. modpon HCaseList. destruct b; cbn in *; auto.
- exists (CaseList_steps_cons x), (1 + Reset_steps x + Constr_S_steps). repeat split; cbn in *; try lia.
eexists; repeat split; simpl_surject; eauto; cbn; eauto.
intros tmid b (HCaseList&HInjCaseList); TMSimp. modpon HCaseList. destruct b; cbn in *; auto; modpon HCaseList.
exists (Reset_steps x), Constr_S_steps. repeat split; cbn; try lia.
eexists; repeat split; simpl_surject; eauto; cbn; eauto.
}
Unshelve. 3:try eassumption. exact _.
Qed.
Definition Length_Loop := While Length_Step.
Fixpoint Length_Loop_size {sigX X : Type} {cX : codable sigX X} (xs : list X) : Vector.t (nat->nat) 3 :=
match xs with
| nil => [|id;id;id|]
| x :: xs' => Length_Step_size x >>> Length_Loop_size xs'
end.
Definition Length_Loop_Rel : pRel sig^+ unit 3 :=
ignoreParam (
fun tin tout =>
forall (xs : list X) (n : nat) (s0 s1 s2:nat),
tin[@Fin0] ≃(;s0) xs ->
tin[@Fin1] ≃(;s1) n ->
isVoid_size tin[@Fin2] s2 ->
tout[@Fin0] ≃(; (Length_Loop_size xs)[@Fin0]s0) @nil X /\
tout[@Fin1] ≃(; (Length_Loop_size xs)[@Fin1]s1) n + length xs /\
isVoid_size tout[@Fin2] ((Length_Loop_size xs)[@Fin2]s2)
).
Lemma Length_Loop_Realise : Length_Loop ⊨ Length_Loop_Rel.
Proof.
eapply Realise_monotone.
{ unfold Length_Loop. TM_Correct.
- apply Length_Step_Realise.
}
{
apply WhileInduction; intros; intros xs n s0 s1 s2 HEncXS HEncN HRight; TMSimp.
{
modpon HLastStep.
destruct xs as [ | x xs']; auto; TMSimp.
cbn. rewrite Nat.add_0_r. repeat split; auto.
}
{
modpon HStar.
destruct xs as [ | x xs']; auto; TMSimp.
modpon HLastStep.
rewrite Nat.add_succ_r.
repeat split; auto.
}
}
Qed.
Fixpoint Length_Loop_steps {sigX X : Type} {cX : codable sigX X} (xs : list X) : nat :=
match xs with
| nil => Length_Step_steps xs
| x :: xs' => S (Length_Step_steps xs) + Length_Loop_steps xs'
end.
Definition Length_Loop_T : tRel sig^+ 3 :=
fun tin k => exists (xs : list X) (n : nat), tin[@Fin0] ≃ xs /\ tin[@Fin1] ≃ n /\ isVoid tin[@Fin2] /\ Length_Loop_steps xs <= k.
Lemma Length_Loop_Terminates : projT1 Length_Loop ↓ Length_Loop_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold Length_Loop. TM_Correct.
- apply Length_Step_Realise.
- apply Length_Step_Terminates. }
{
apply WhileCoInduction. intros tin k (xs&n&HEncXs&HEncN&HRight2&Hk). exists (Length_Step_steps xs). repeat split.
- hnf. do 2 eexists. repeat split; eauto.
- intros b tmid HStep. hnf in HStep. modpon HStep. destruct b as [ () | ], xs as [ | x xs']; cbn in *; auto; modpon HStep.
eexists (Length_Loop_steps xs'). repeat split; try lia. hnf. exists xs', (S n). repeat split; eauto.
}
Qed.
Definition Length : pTM sig^+ unit 4 :=
LiftTapes (CopyValue _) [|Fin0; Fin3|];;
LiftTapes (ChangeAlphabet Constr_O _) [|Fin1|];;
LiftTapes (Length_Loop) [|Fin3; Fin1; Fin2|];;
LiftTapes (ResetEmpty1 _) [|Fin3|].
Definition Length_size {sigX X : Type} {cX : codable sigX X} (xs : list X) : Vector.t (nat->nat) 4 :=
[|id;
Constr_O_size >> (Length_Loop_size xs)[@Fin1];
(Length_Loop_size xs)[@Fin2];
CopyValue_size xs >> (Length_Loop_size xs)[@Fin0] >> Reset_size (@nil X)
|].
Definition Length_Rel : pRel sig^+ unit 4 :=
ignoreParam (
fun tin tout =>
forall (xs : list X) (s0 s1 s2 s3 : nat),
tin[@Fin0] ≃(;s0) xs ->
isVoid_size tin[@Fin1] s1 ->
isVoid_size tin[@Fin2] s2 ->
isVoid_size tin[@Fin3] s3 ->
tout[@Fin0] ≃(; (Length_size xs)[@Fin0]s0) xs /\
tout[@Fin1] ≃(; (Length_size xs)[@Fin1]s1) length xs /\
isVoid_size tout[@Fin2] ((Length_size xs)[@Fin2]s2) /\
isVoid_size tout[@Fin3] ((Length_size xs)[@Fin3]s3)
).
Lemma Length_Computes : Length ⊨ Length_Rel.
Proof.
eapply Realise_monotone.
{ unfold Length. TM_Correct.
- apply Length_Loop_Realise.
- eapply RealiseIn_Realise. apply ResetEmpty1_Sem with (X := list X).
}
{
intros tin ((), tout) H. intros xs s0 s1 s2 s3 HEncXs Hout HInt2 HInt3.
TMSimp. modpon H. modpon H0. modpon H2. modpon H4.
repeat split; auto.
}
Qed.
Definition Length_steps {sigX X : Type} {cX : codable sigX X} (xs : list X) := 36 + 12 * size xs + Length_Loop_steps xs.
Definition Length_T : tRel sig^+ 4 :=
fun tin k => exists (xs : list X), tin[@Fin0] ≃ xs /\ isVoid tin[@Fin1] /\ isVoid tin[@Fin2] /\ isVoid tin[@Fin3] /\ Length_steps xs <= k.
Lemma Length_Terminates : projT1 Length ↓ Length_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold Length. TM_Correct.
- apply Length_Loop_Realise.
- apply Length_Loop_Terminates.
- eapply RealiseIn_TerminatesIn. eapply ResetEmpty1_Sem.
}
{
intros tin k (xs&HEncXs&HRight1&HRight2&HRigth3&Hk). unfold Length_steps in *.
exists (25 + 12 * size xs), (10 + Length_Loop_steps xs). repeat split; cbn; try lia.
eexists. repeat split; eauto. unfold CopyValue_steps.
intros tmid () (HO&HOInj); TMSimp. modpon HO.
exists 5, (4 + Length_Loop_steps xs). unfold Constr_O_steps. repeat split; cbn; try lia.
intros tmid0_ () (HLoop&HLoopInj); TMSimp. modpon HLoop.
exists (Length_Loop_steps xs), 3. repeat split; cbn; try lia.
hnf. cbn. do 2 eexists. repeat split; eauto.
now intros _ _ _.
}
Unshelve. 3:eassumption. 2: exact _.
Qed.
End Lenght.
Arguments Length_steps {sigX X cX} : simpl never.
Arguments Length_size {sigX X cX} : simpl never.
From Undecidability.L.Complexity Require Import UpToC.
Section Length_steps_nice.
Variable (sigX X : Type) (cX : codable sigX X).
Lemma Length_Loop_steps_nice :
Length_Loop_steps <=c size (X:=list X).
Proof.
evar (c:nat). exists (1+max CaseList_steps_nil c). setoid_rewrite Encode_list_hasSize.
induction x. all:cbn. nia.
rewrite IHx. ring_simplify.
set (c1:=Init.Nat.max CaseList_steps_nil c * Encode_list_size cX x).
set (c2:=Encode_list_size cX x).
unfold Reset_steps,CaseList_steps_cons.
unify ?c (24+16+8+4+ Constr_S_steps +2). nia.
Qed.
Lemma Length_steps_nice :
Length_steps <=c size (X:=list X).
Proof.
unfold Length_steps. smpl_upToC.
-apply upToC_le. setoid_rewrite (Encode_list_hasSize cX). apply Encode_list_hasSize_ge1.
-upToC_le_solve.
-apply Length_Loop_steps_nice.
Qed.
End Length_steps_nice.