From Undecidability.Shared.Libs.PSL Require Import FinTypes Vectors.
From Undecidability.L Require Import L_facts UpToC.
From Coq Require Vector.
Import ListNotations.
From Coq Require Import List.
From Undecidability.TM.L.CompilerBoolFuns Require Import Compiler_spec.
From Undecidability.TM Require Import TM_facts Hoare ProgrammingTools.
From Undecidability.TM.Code Require Import CaseBool CaseList WriteValue Copy ListTM.
Set Default Proof Using "Type".
Module Boollist2encBoolsTM.
Section Fix.
Variable Σ : finType.
Variable s b : Σ^+.
Variable (retr_list : Retract (sigList bool) Σ).
Local Instance retr_bool : Retract bool Σ := ComposeRetract retr_list (Retract_sigList_X _).
Definition M__step : pTM (Σ) ^+ (option unit) 3 :=
If (CaseList _ ⇑ retr_list @ [|Fin0;Fin2|])
(Switch (CaseBool ⇑ retr_bool @ [|Fin2|])
(fun x =>
WriteMove (if x then s else b) Lmove @ [|Fin1|];;
Return Nop None))
(Reset _ @[|Fin0|];;Return (Write b @ [|Fin1|]) (Some tt)).
Definition M__loop := While M__step.
Lemma loop_SpecT:
{ f : UpToC (fun bs => length bs + 1) &
forall bs res,
TripleT
(≃≃([]%list,[|Contains _ bs; Custom (fun t => right t = map (fun (x:bool) => if x then s else b) res
/\ length (left t) <= length bs); Void|]) )
(f bs)
M__loop
(fun _ => ≃≃([]%list,[|Void; Custom (eq (encBoolsTM s b (rev bs++res))) ; Void |])) }.
Proof.
evar (c1 : nat);evar (c2 :nat).
exists_UpToC (fun bs => c1 * length bs + c2). 2:now smpl_upToC_solve.
intros bs res.
unfold M__loop.
refine (While_SpecTReg _ _
(PRE := fun '(bs,res) => (_,_)) (INV := fun '(bs,res) y => ([y = match bs with []%list => Some tt | _ => None end]%list,_)) (POST := fun '(bs,res) y => (_,_))
(f__step := fun '(bs,res) => _) (f__loop := fun '(bs,res) => _) (bs,res));
clear bs res; intros (bs,res); cbn in *.
{ unfold M__step. hstep.
- hsteps_cbn. cbn. tspec_ext.
- cbn. hintros H.
refine (_ : TripleT _ _ _ (fun y => ≃≃( _ ,match bs with nil => _ | cons b0 bs => _ end))).
destruct bs as [ | b0 bs]. easy. hsteps_cbn;cbn. 3:reflexivity. now tspec_ext.
+ hintros ? ->. hsteps_cbn. 2:cbn;reflexivity. tspec_ext.
- cbn. hintros H. destruct bs. 2:easy.
hsteps_cbn; cbn. tspec_ext. now unfold Reset_steps;cbn;reflexivity.
- cbn. intros ? ->. reflexivity.
}
cbn. split.
-intros. destruct bs. 2:easy. split.
+tspec_ext. unfold encBoolsTM,encBoolsListTM. destruct H1 as (t&->&H'&Hr). rewrite H'.
destruct (left t). all:easy.
+ cbn. rewrite Nat.mul_0_r. cbn. shelve.
- intros. destruct bs as [ | b' bs]. easy. eexists (_,_);cbn.
split.
+tspec_ext. destruct H1 as (t&->&?&?).
rewrite tape_right_move_left',tape_left_move_left'. rewrite H1.
instantiate (1:=b'::res). split. easy. destruct (left t);cbn in H2|-*. all:nia.
+ split. 2:{ tspec_ext. rewrite <- H1. now rewrite <- app_assoc. }
shelve.
Unshelve.
3:unfold c2;reflexivity.
2:{ unfold CaseList_steps,CaseList_steps_cons. rewrite Encode_bool_hasSize.
ring_simplify. [c1]:exact 68. subst c1. cbn - ["+" "*"] in *. fold Nat.add. nia. }
Qed.
Definition M : pTM (Σ) ^+ unit 3 :=
M__loop.
Lemma SpecT:
{ f : UpToC (fun bs => length bs + 1) &
forall bs,
TripleT
(≃≃([],[|Contains _ bs; Custom (eq niltape); Void|]) )
(f bs)
M
(fun _ => ≃≃([],[|Void; Custom (eq (encBoolsTM s b (rev bs))) ; Void |])) }.
Proof.
eexists. intros. eapply ConsequenceT.
eapply (projT2 loop_SpecT) with (res:=[]).
-tspec_ext. rewrite <- H0. now cbn.
-intros []. now rewrite app_nil_r.
-reflexivity.
Qed.
Theorem Realise :
Realise M (fun t '(r, t') =>
forall (l : list bool),
t[@Fin0] ≃ l ->
t[@Fin1] = niltape ->
isVoid (t[@Fin2]) ->
t'[@Fin1] = encBoolsTM s b (rev l)
/\ (isVoid (t'[@Fin0]) /\ isVoid (t'[@Fin2]))).
Proof.
repeat (eapply RealiseIntroAll;intro). eapply Realise_monotone.
-eapply TripleT_Realise. eapply (projT2 SpecT).
-cbn. intros ? [] H **. modpon H.
{unfold "≃≃",withSpace;cbn. intros i; destruct_fin i;cbn. all:easy. }
repeat destruct _;unfold "≃≃",withSpace in H;cbn in H.
all:specializeFin H;eauto 6.
Qed.
End Fix.
End Boollist2encBoolsTM.
Module encBoolsTM2boollist.
Section Fix.
Variable Σ : finType.
Variable s b : Σ^+.
Variable (retr_list : Retract (sigList bool) Σ).
Local Instance retr_bool : Retract bool Σ := ComposeRetract retr_list (Retract_sigList_X _).
Definition M__step : pTM (Σ) ^+ (option unit) 2 :=
Switch (ReadChar @ [|Fin0|])
(fun x =>
match x with
None => Return Nop (Some tt)
| Some x => Move Lmove @ [|Fin0|];;
If (Relabel (ReadChar @ [|Fin0|]) ssrbool.isSome)
((Cons_constant.M (if Dec (x=s) then true else false)) ⇑ retr_list @ [|Fin1|];;Return Nop (None))
(Return (Move Rmove @ [|Fin0|]) (Some tt))
end).
Definition M__loop := While M__step.
Lemma loop_SpecT (H__neq : s <> b):
{ f : UpToC (fun bs => length bs + 1) &
forall bs res tin,
TripleT
(≃≃([right tin = map (fun (x:bool) => if x then s else b) res
/\ tape_local_l tin = (map (fun (x:bool) => if x then s else b) bs++[b]) ],[| Custom (eq tin); Contains _ res|]) )
(f bs)
M__loop
(fun _ => ≃≃([],[|Custom (eq (encBoolsTM s b (rev bs++res))) ; Contains _ (rev bs ++ res)|])) }.
Proof.
evar (c1 : nat);evar (c2 :nat).
exists_UpToC (fun bs => c1 * length bs + c2). 2:now smpl_upToC_solve.
intros bs res tin.
unfold M__loop.
refine (While_SpecTReg
(PRE := fun '(bs,res,tin) => (_,_))
(INV := fun '(bs,res,tin) y =>
([match y with None => bs <> nil | _ => bs = nil end;
right tin = map (fun (x:bool) => if x then s else b) res;
tape_local_l tin = (map (fun (x:bool) => if x then s else b) bs++[b])],
match bs with nil => [|Custom (eq tin) ; Contains _ res|]
| b'::bs => [|Custom (eq (tape_move_left tin));Contains _ (b'::res)|] end)) (POST := fun '(bs,res,tin) y => (_,_))
(f__step := fun '(bs,res,tin) => _) (f__loop := fun '(bs,res,tin) => _) _ _ ((bs,res,tin)));
clear bs res tin; intros [[bs res] tin]; cbn in *.
{ unfold M__step. hintros [Hres Hbs]. hsteps_cbn;cbn. 2:reflexivity.
cbn. intros y.
hintros (?&->&<-).
assert (Hcur : current tin = Some (hd s (map (fun x : bool => if x then s else b) bs ++ [b]))).
{ destruct bs;cbn in Hbs. all:now eapply tape_local_l_current_cons in Hbs as ->. }
setoid_rewrite Hcur at 2;cbn.
hstep;cbn. now hsteps_cbn. 2:reflexivity.
cbn;intros _.
hstep.
{ hsteps_cbn;cbn. intros yout. hintros (?&Hy&?&->&_&<-).
set (y:=@ssrbool.isSome (boundary + Σ) yout).
refine (_ : Entails _ ≃≃([ y=match bs with [] => false | _ => true end],_)). subst y yout.
tspec_ext.
destruct bs;cbn in Hbs;eapply tape_local_l_move_left in Hbs;cbn in Hbs.
now destruct (tape_move_left tin);cbn in Hbs|-*;congruence.
destruct bs;cbn in Hbs;eapply tape_local_l_current_cons in Hbs. all:now rewrite Hbs.
}
2:{destruct bs;hintros [=];[]. cbn in *. hsteps_cbn.
tspec_ext. 1-2:assumption. destruct H0 as (?&?&?&?&->&?&<-). rewrite H0.
erewrite tape_move_left_right. all:easy.
}
{ destruct bs;hintros [=];[]. cbn in *. hsteps.
{ tspec_ext;cbn in *. contains_ext. }
{ intros. hsteps_cbn. tspec_ext. 1-3:easy. 2:now destruct H0 as (?&?&?&?&?);congruence.
f_equal. destruct b0;decide _. all:congruence. } cbv. reflexivity.
}
cbn. intros ? ->. destruct bs. 2:reflexivity. nia.
}
split.
- intros [Hres Hbs] _;cbn. split. 2:{ cbn. [c2]:exact 14. subst c2. fold plus. nia. }
destruct bs as [ | ];cbn. 2:easy.
apply midtape_tape_local_l_cons in Hbs. rewrite Hres in Hbs.
rewrite Hbs. reflexivity.
- intros H. destruct bs as [ | b' bs]. easy.
intros Hres Hbs. cbn in Hbs.
apply midtape_tape_local_l_cons in Hbs. rewrite Hres in Hbs.
eexists ((bs,b'::res),tape_move_left tin).
repeat eapply conj.
+cbn.
erewrite tape_right_move_left. 2:subst;reflexivity.
erewrite tape_local_l_move_left. 2:subst;reflexivity.
rewrite Hres. tspec_ext. easy.
+ subst c2;cbn;ring_simplify. [c1]:exact 15. unfold c1;fold plus;nia.
+ cbn. rewrite <- !app_assoc. reflexivity.
Qed.
Definition M : pTM (Σ) ^+ unit 2 :=
(MoveToSymbol (fun _ => false) (fun x => x);;Move Lmove) @ [|Fin0|];;
WriteValue (@nil bool)⇑ retr_list @ [|Fin1|];;
M__loop.
Lemma SpecT (H__neq : s <> b):
{ f : UpToC (fun bs => length bs + 1) &
forall bs,
TripleT
(≃≃([],[| Custom (eq (encBoolsTM s b bs)); Void|]) )
(f bs)
M
(fun _ => ≃≃([],[|Custom (eq (encBoolsTM s b bs)) ; Contains _ bs|])) }.
Proof.
evar (f : nat -> nat).
exists_UpToC (fun bs => f (length bs)). 2:now shelve.
unfold M.
intros bs.
hstep. {hsteps_cbn. reflexivity. }
hnf.
intros _.
hstep. {hsteps_cbn. reflexivity. } 2:reflexivity.
cbn. intros _.
{
eapply ConsequenceT. eapply (projT2 (loop_SpecT H__neq)) with (bs:=_)(res:=_) (tin:=_).
3:reflexivity. 2:{ intro;cbn. rewrite rev_involutive,app_nil_r. reflexivity. }
eapply EntailsI. intros tin.
unfold encBoolsTM,encBoolsListTM.
rewrite MoveToSymbol_correct_midtape_end. 2:easy.
intros [_ H]%tspecE.
specializeFin H.
destruct H0 as (?&H0&<-).
tspec_solve. 2:rewrite H0;reflexivity.
cbn. split. easy. rewrite <- map_rev,map_map;cbn. destruct (rev bs);cbn. all:easy.
}
cbn - ["+"].
rewrite UpToC_le. ring_simplify.
unfold encBoolsTM,encBoolsListTM.
rewrite MoveToSymbol_steps_midtape_end. 2:easy.
rewrite map_length,rev_length.
[f]:intros n. now unfold f;set (n:=length bs);reflexivity.
Unshelve. subst f;cbn beta. smpl_upToC_solve.
Qed.
Theorem Realise (H__neq : s <> b):
Realise M (fun t '(r, t') =>
forall (l : list bool),
t[@Fin0] = encBoolsTM s b l ->
isVoid t[@Fin1] ->
t[@Fin0] = t'[@Fin0]
/\ t'[@Fin1] ≃ l).
Proof.
repeat (eapply RealiseIntroAll;intro). eapply Realise_monotone.
-eapply TripleT_Realise,(projT2 (SpecT H__neq)).
-intros ? [] H **. modpon H.
{unfold "≃≃",withSpace;cbn. intros i; destruct_fin i;cbn. all:eauto. }
repeat destruct _;unfold "≃≃",withSpace in H;cbn in H.
specializeFin H. cbn in *;easy.
Qed.
End Fix.
End encBoolsTM2boollist.
From Undecidability.L Require Import L_facts UpToC.
From Coq Require Vector.
Import ListNotations.
From Coq Require Import List.
From Undecidability.TM.L.CompilerBoolFuns Require Import Compiler_spec.
From Undecidability.TM Require Import TM_facts Hoare ProgrammingTools.
From Undecidability.TM.Code Require Import CaseBool CaseList WriteValue Copy ListTM.
Set Default Proof Using "Type".
Module Boollist2encBoolsTM.
Section Fix.
Variable Σ : finType.
Variable s b : Σ^+.
Variable (retr_list : Retract (sigList bool) Σ).
Local Instance retr_bool : Retract bool Σ := ComposeRetract retr_list (Retract_sigList_X _).
Definition M__step : pTM (Σ) ^+ (option unit) 3 :=
If (CaseList _ ⇑ retr_list @ [|Fin0;Fin2|])
(Switch (CaseBool ⇑ retr_bool @ [|Fin2|])
(fun x =>
WriteMove (if x then s else b) Lmove @ [|Fin1|];;
Return Nop None))
(Reset _ @[|Fin0|];;Return (Write b @ [|Fin1|]) (Some tt)).
Definition M__loop := While M__step.
Lemma loop_SpecT:
{ f : UpToC (fun bs => length bs + 1) &
forall bs res,
TripleT
(≃≃([]%list,[|Contains _ bs; Custom (fun t => right t = map (fun (x:bool) => if x then s else b) res
/\ length (left t) <= length bs); Void|]) )
(f bs)
M__loop
(fun _ => ≃≃([]%list,[|Void; Custom (eq (encBoolsTM s b (rev bs++res))) ; Void |])) }.
Proof.
evar (c1 : nat);evar (c2 :nat).
exists_UpToC (fun bs => c1 * length bs + c2). 2:now smpl_upToC_solve.
intros bs res.
unfold M__loop.
refine (While_SpecTReg _ _
(PRE := fun '(bs,res) => (_,_)) (INV := fun '(bs,res) y => ([y = match bs with []%list => Some tt | _ => None end]%list,_)) (POST := fun '(bs,res) y => (_,_))
(f__step := fun '(bs,res) => _) (f__loop := fun '(bs,res) => _) (bs,res));
clear bs res; intros (bs,res); cbn in *.
{ unfold M__step. hstep.
- hsteps_cbn. cbn. tspec_ext.
- cbn. hintros H.
refine (_ : TripleT _ _ _ (fun y => ≃≃( _ ,match bs with nil => _ | cons b0 bs => _ end))).
destruct bs as [ | b0 bs]. easy. hsteps_cbn;cbn. 3:reflexivity. now tspec_ext.
+ hintros ? ->. hsteps_cbn. 2:cbn;reflexivity. tspec_ext.
- cbn. hintros H. destruct bs. 2:easy.
hsteps_cbn; cbn. tspec_ext. now unfold Reset_steps;cbn;reflexivity.
- cbn. intros ? ->. reflexivity.
}
cbn. split.
-intros. destruct bs. 2:easy. split.
+tspec_ext. unfold encBoolsTM,encBoolsListTM. destruct H1 as (t&->&H'&Hr). rewrite H'.
destruct (left t). all:easy.
+ cbn. rewrite Nat.mul_0_r. cbn. shelve.
- intros. destruct bs as [ | b' bs]. easy. eexists (_,_);cbn.
split.
+tspec_ext. destruct H1 as (t&->&?&?).
rewrite tape_right_move_left',tape_left_move_left'. rewrite H1.
instantiate (1:=b'::res). split. easy. destruct (left t);cbn in H2|-*. all:nia.
+ split. 2:{ tspec_ext. rewrite <- H1. now rewrite <- app_assoc. }
shelve.
Unshelve.
3:unfold c2;reflexivity.
2:{ unfold CaseList_steps,CaseList_steps_cons. rewrite Encode_bool_hasSize.
ring_simplify. [c1]:exact 68. subst c1. cbn - ["+" "*"] in *. fold Nat.add. nia. }
Qed.
Definition M : pTM (Σ) ^+ unit 3 :=
M__loop.
Lemma SpecT:
{ f : UpToC (fun bs => length bs + 1) &
forall bs,
TripleT
(≃≃([],[|Contains _ bs; Custom (eq niltape); Void|]) )
(f bs)
M
(fun _ => ≃≃([],[|Void; Custom (eq (encBoolsTM s b (rev bs))) ; Void |])) }.
Proof.
eexists. intros. eapply ConsequenceT.
eapply (projT2 loop_SpecT) with (res:=[]).
-tspec_ext. rewrite <- H0. now cbn.
-intros []. now rewrite app_nil_r.
-reflexivity.
Qed.
Theorem Realise :
Realise M (fun t '(r, t') =>
forall (l : list bool),
t[@Fin0] ≃ l ->
t[@Fin1] = niltape ->
isVoid (t[@Fin2]) ->
t'[@Fin1] = encBoolsTM s b (rev l)
/\ (isVoid (t'[@Fin0]) /\ isVoid (t'[@Fin2]))).
Proof.
repeat (eapply RealiseIntroAll;intro). eapply Realise_monotone.
-eapply TripleT_Realise. eapply (projT2 SpecT).
-cbn. intros ? [] H **. modpon H.
{unfold "≃≃",withSpace;cbn. intros i; destruct_fin i;cbn. all:easy. }
repeat destruct _;unfold "≃≃",withSpace in H;cbn in H.
all:specializeFin H;eauto 6.
Qed.
End Fix.
End Boollist2encBoolsTM.
Module encBoolsTM2boollist.
Section Fix.
Variable Σ : finType.
Variable s b : Σ^+.
Variable (retr_list : Retract (sigList bool) Σ).
Local Instance retr_bool : Retract bool Σ := ComposeRetract retr_list (Retract_sigList_X _).
Definition M__step : pTM (Σ) ^+ (option unit) 2 :=
Switch (ReadChar @ [|Fin0|])
(fun x =>
match x with
None => Return Nop (Some tt)
| Some x => Move Lmove @ [|Fin0|];;
If (Relabel (ReadChar @ [|Fin0|]) ssrbool.isSome)
((Cons_constant.M (if Dec (x=s) then true else false)) ⇑ retr_list @ [|Fin1|];;Return Nop (None))
(Return (Move Rmove @ [|Fin0|]) (Some tt))
end).
Definition M__loop := While M__step.
Lemma loop_SpecT (H__neq : s <> b):
{ f : UpToC (fun bs => length bs + 1) &
forall bs res tin,
TripleT
(≃≃([right tin = map (fun (x:bool) => if x then s else b) res
/\ tape_local_l tin = (map (fun (x:bool) => if x then s else b) bs++[b]) ],[| Custom (eq tin); Contains _ res|]) )
(f bs)
M__loop
(fun _ => ≃≃([],[|Custom (eq (encBoolsTM s b (rev bs++res))) ; Contains _ (rev bs ++ res)|])) }.
Proof.
evar (c1 : nat);evar (c2 :nat).
exists_UpToC (fun bs => c1 * length bs + c2). 2:now smpl_upToC_solve.
intros bs res tin.
unfold M__loop.
refine (While_SpecTReg
(PRE := fun '(bs,res,tin) => (_,_))
(INV := fun '(bs,res,tin) y =>
([match y with None => bs <> nil | _ => bs = nil end;
right tin = map (fun (x:bool) => if x then s else b) res;
tape_local_l tin = (map (fun (x:bool) => if x then s else b) bs++[b])],
match bs with nil => [|Custom (eq tin) ; Contains _ res|]
| b'::bs => [|Custom (eq (tape_move_left tin));Contains _ (b'::res)|] end)) (POST := fun '(bs,res,tin) y => (_,_))
(f__step := fun '(bs,res,tin) => _) (f__loop := fun '(bs,res,tin) => _) _ _ ((bs,res,tin)));
clear bs res tin; intros [[bs res] tin]; cbn in *.
{ unfold M__step. hintros [Hres Hbs]. hsteps_cbn;cbn. 2:reflexivity.
cbn. intros y.
hintros (?&->&<-).
assert (Hcur : current tin = Some (hd s (map (fun x : bool => if x then s else b) bs ++ [b]))).
{ destruct bs;cbn in Hbs. all:now eapply tape_local_l_current_cons in Hbs as ->. }
setoid_rewrite Hcur at 2;cbn.
hstep;cbn. now hsteps_cbn. 2:reflexivity.
cbn;intros _.
hstep.
{ hsteps_cbn;cbn. intros yout. hintros (?&Hy&?&->&_&<-).
set (y:=@ssrbool.isSome (boundary + Σ) yout).
refine (_ : Entails _ ≃≃([ y=match bs with [] => false | _ => true end],_)). subst y yout.
tspec_ext.
destruct bs;cbn in Hbs;eapply tape_local_l_move_left in Hbs;cbn in Hbs.
now destruct (tape_move_left tin);cbn in Hbs|-*;congruence.
destruct bs;cbn in Hbs;eapply tape_local_l_current_cons in Hbs. all:now rewrite Hbs.
}
2:{destruct bs;hintros [=];[]. cbn in *. hsteps_cbn.
tspec_ext. 1-2:assumption. destruct H0 as (?&?&?&?&->&?&<-). rewrite H0.
erewrite tape_move_left_right. all:easy.
}
{ destruct bs;hintros [=];[]. cbn in *. hsteps.
{ tspec_ext;cbn in *. contains_ext. }
{ intros. hsteps_cbn. tspec_ext. 1-3:easy. 2:now destruct H0 as (?&?&?&?&?);congruence.
f_equal. destruct b0;decide _. all:congruence. } cbv. reflexivity.
}
cbn. intros ? ->. destruct bs. 2:reflexivity. nia.
}
split.
- intros [Hres Hbs] _;cbn. split. 2:{ cbn. [c2]:exact 14. subst c2. fold plus. nia. }
destruct bs as [ | ];cbn. 2:easy.
apply midtape_tape_local_l_cons in Hbs. rewrite Hres in Hbs.
rewrite Hbs. reflexivity.
- intros H. destruct bs as [ | b' bs]. easy.
intros Hres Hbs. cbn in Hbs.
apply midtape_tape_local_l_cons in Hbs. rewrite Hres in Hbs.
eexists ((bs,b'::res),tape_move_left tin).
repeat eapply conj.
+cbn.
erewrite tape_right_move_left. 2:subst;reflexivity.
erewrite tape_local_l_move_left. 2:subst;reflexivity.
rewrite Hres. tspec_ext. easy.
+ subst c2;cbn;ring_simplify. [c1]:exact 15. unfold c1;fold plus;nia.
+ cbn. rewrite <- !app_assoc. reflexivity.
Qed.
Definition M : pTM (Σ) ^+ unit 2 :=
(MoveToSymbol (fun _ => false) (fun x => x);;Move Lmove) @ [|Fin0|];;
WriteValue (@nil bool)⇑ retr_list @ [|Fin1|];;
M__loop.
Lemma SpecT (H__neq : s <> b):
{ f : UpToC (fun bs => length bs + 1) &
forall bs,
TripleT
(≃≃([],[| Custom (eq (encBoolsTM s b bs)); Void|]) )
(f bs)
M
(fun _ => ≃≃([],[|Custom (eq (encBoolsTM s b bs)) ; Contains _ bs|])) }.
Proof.
evar (f : nat -> nat).
exists_UpToC (fun bs => f (length bs)). 2:now shelve.
unfold M.
intros bs.
hstep. {hsteps_cbn. reflexivity. }
hnf.
intros _.
hstep. {hsteps_cbn. reflexivity. } 2:reflexivity.
cbn. intros _.
{
eapply ConsequenceT. eapply (projT2 (loop_SpecT H__neq)) with (bs:=_)(res:=_) (tin:=_).
3:reflexivity. 2:{ intro;cbn. rewrite rev_involutive,app_nil_r. reflexivity. }
eapply EntailsI. intros tin.
unfold encBoolsTM,encBoolsListTM.
rewrite MoveToSymbol_correct_midtape_end. 2:easy.
intros [_ H]%tspecE.
specializeFin H.
destruct H0 as (?&H0&<-).
tspec_solve. 2:rewrite H0;reflexivity.
cbn. split. easy. rewrite <- map_rev,map_map;cbn. destruct (rev bs);cbn. all:easy.
}
cbn - ["+"].
rewrite UpToC_le. ring_simplify.
unfold encBoolsTM,encBoolsListTM.
rewrite MoveToSymbol_steps_midtape_end. 2:easy.
rewrite map_length,rev_length.
[f]:intros n. now unfold f;set (n:=length bs);reflexivity.
Unshelve. subst f;cbn beta. smpl_upToC_solve.
Qed.
Theorem Realise (H__neq : s <> b):
Realise M (fun t '(r, t') =>
forall (l : list bool),
t[@Fin0] = encBoolsTM s b l ->
isVoid t[@Fin1] ->
t[@Fin0] = t'[@Fin0]
/\ t'[@Fin1] ≃ l).
Proof.
repeat (eapply RealiseIntroAll;intro). eapply Realise_monotone.
-eapply TripleT_Realise,(projT2 (SpecT H__neq)).
-intros ? [] H **. modpon H.
{unfold "≃≃",withSpace;cbn. intros i; destruct_fin i;cbn. all:eauto. }
repeat destruct _;unfold "≃≃",withSpace in H;cbn in H.
specializeFin H. cbn in *;easy.
Qed.
End Fix.
End encBoolsTM2boollist.