Require Import Undecidability.Shared.Libs.PSL.FiniteTypes.FinTypes Undecidability.Shared.Libs.PSL.Vectors.Vectors.
Require Import Vector List.
Require Import Undecidability.TM.Util.TM_facts.
From Undecidability Require Import ProgrammingTools WriteValue Copy ListTM JumpTargetTM WriteValue.
From Undecidability.TM.L Require Import Alphabets LookupTM.
From Undecidability.L.AbstractMachines.FlatPro Require Import LM_heap_def LM_heap_correct UnfoldClos.
From Undecidability.TM Require Import CaseList CasePair CaseCom CaseNat NatSub.
From Undecidability Require Import L.L TM.TM Hoare.
From Undecidability.L.Prelim Require Import LoopSum.
Require Import Ring Arith.
Import VectorNotations.
Import ListNotations.
Import Coq.Init.Datatypes List.
Open Scope string_scope.
Require Import String.
Set Default Proof Using "Type".
From Undecidability Require Cons_constant.
Module Private_UnfoldClos.
Section Fix.
Variable Σ : finType.
Variable retr_stack : Retract (sigList (sigPair sigHClos sigNat)) Σ.
Variable retr_heap : Retract sigHeap Σ.
Definition retr_clos : Retract sigHClos Σ := ComposeRetract retr_stack _.
Definition retr_pro : Retract sigPro Σ := ComposeRetract retr_clos _.
Definition retr_com : Retract sigCom Σ := ComposeRetract retr_pro _.
Definition retr_nat_clos_ad' : Retract sigNat sigHClos := Retract_sigPair_X _ _.
Definition retr_nat_clos_ad : Retract sigNat Σ := ComposeRetract retr_clos retr_nat_clos_ad'.
Definition retr_nat_clos_var' : Retract sigNat sigHClos := Retract_sigPair_Y _ _.
Definition retr_nat_clos_var : Retract sigNat Σ := ComposeRetract retr_clos retr_nat_clos_var'.
Definition retr_stackEl : Retract (sigPair sigHClos sigNat) Σ :=
(ComposeRetract retr_stack _).
Definition retr_nat_stack : Retract sigNat Σ :=
ComposeRetract retr_stackEl
(Retract_sigPair_Y _ _) .
Local Definition Lookup := Lookup retr_clos retr_heap.
Local Notation i_H := Fin0 (only parsing).
Local Notation i_a := Fin1 (only parsing).
Local Notation i_P := Fin2 (only parsing).
Local Notation i_k := Fin3 (only parsing).
Local Notation i_stack' := Fin4 (only parsing).
Local Notation i_res := Fin5 (only parsing).
Local Notation i_aux1 := Fin6 (only parsing).
Local Notation i_aux2 := Fin7 (only parsing).
Local Notation i_aux3 := Fin8 (only parsing).
Local Notation i_aux4 := Fin9 (only parsing).
Definition M__step : pTM (Σ) ^+ (option unit) 10 :=
If
(CaseList _ ⇑ retr_pro @ [| i_P;i_aux1|])
(Switch (CaseCom ⇑ retr_com @ [|i_aux1|])
(fun i : option ACom=> match i with
| Some c =>
Cons_constant.M (ACom2Com c)⇑ retr_pro @ [| i_res|];;
Return
match c return match c with _ => _ end with
| retAT => (CaseNat ⇑ retr_nat_clos_var @ [|i_k|];;Return Nop tt)
| lamAT => Constr_S ⇑ retr_nat_clos_var @ [|i_k|]
| appAT => Nop
end
None
| None =>
CopyValue _ @ [| i_k;i_aux2|];;
CopyValue _ @ [| i_aux1;i_aux3|];;
If (Subtract ⇑ retr_nat_clos_var @ [|i_aux3;i_aux2|])
(Reset _ @ [|i_aux1|];;
CopyValue _ @ [| i_a;i_aux4|];;
If (Lookup @ [|i_H;i_aux4;i_aux3;i_aux1;i_aux2|])
(Cons_constant.M lamT⇑ retr_pro @ [| i_res|];;
Cons_constant.M retT⇑ retr_pro @ [| i_P|];;
Constr_S ⇑ retr_nat_clos_var @ [|i_k|];;
Constr_pair _ _ ⇑ retr_clos @ [|i_a;i_P|];;
Reset _ @ [|i_a|];;
Translate retr_nat_clos_var retr_nat_stack @[|i_k|];;
Constr_pair _ _ ⇑ retr_stackEl @ [|i_P;i_k|];;
MoveValue _ @ [|i_aux1;i_P|];;
Constr_cons _ ⇑ retr_stack @ [| i_stack';i_k|];;
Reset _ @ [|i_k|];;
CasePair _ _ ⇑ retr_clos @ [|i_P;i_a|];;
Return (WriteValue ( 1) ⇑ retr_nat_clos_var @ [|i_k|]) None
)
(Return Diverge (Some tt))
)
(Return
(Constr_varT ⇑ retr_com @ [|i_aux1|];;
Constr_cons _ ⇑ retr_pro @ [| i_res;i_aux1|];;
Reset _ @ [|i_aux1|];;
Reset _ @ [|i_aux3|])
None)
end)
)
( Reset _ @ [|i_P|];;
Reset _ @ [|i_a|];;
Reset _ @ [|i_k|];;
If
(CaseList _ ⇑ retr_stack @ [| i_stack';i_k|])
(CasePair _ _ ⇑ retr_stackEl @ [|i_k;i_P|];;
CasePair _ _ ⇑ retr_clos @ [|i_P;i_a|];;
Translate retr_nat_stack retr_nat_clos_var @[|i_k|];;
Return Nop None
)
(Reset _ @ [|i_stack'|];;Return Nop (Some tt))
).
Local Arguments "+"%nat : simpl never.
Local Arguments "*"%nat : simpl never.
Local Arguments UpToC.f__UpToC {_ _} _ _.
Open Scope nat_scope.
Definition steps_step H (stack : list (HAdd * list Tok * nat)) :=
match stack with
(a,P,k)::stack' =>
1 + CaseList_steps P +
(if match P with
| [] => false
| _ :: _ => true
end
then
match P with
| [] => 0
| t :: P0 =>
match t with
| varT n =>
1 + CaseCom_steps +
(1 + CopyValue_steps k +
(1 + CopyValue_steps n +
(1 + UpToC.f__UpToC (projT1 Subtract_SpecT) k +
(if k <=? n
then
1 + Reset_steps n +
(1 + CopyValue_steps a +
match lookup H a (n - k) with
| Some h =>
let (_, _) := h in
Lookup_steps H a (n - k) + Cons_constant.time lamT +
Cons_constant.time retT + Constr_S_steps +
Constr_pair_steps a + Reset_steps a +
Translate_steps (1 + k) +
Constr_pair_steps (a, retT :: P0) +
MoveValue_steps h (a, retT :: P0) +
Constr_cons_steps (a, retT :: P0, 1 + k) +
Reset_steps (a, retT :: P0, 1 + k) +
CasePair_steps (fst h) + WriteValue_steps 2 +
Pos.to_nat 11 + 1
| None => 0
end)
else
Constr_varT_steps + Constr_cons_steps t + Reset_steps t +
Reset_steps (n - k) + Pos.to_nat 3))))
| _ => 1 + CaseCom_steps + 16
end
end
else
1 + Reset_steps P +
(1 + Reset_steps a +
(1 + Reset_steps k +
(1 + CaseList_steps stack' +
(if match stack' with
| [] => false
| _ :: _ => true
end
then
match stack' with
| [] => 0
| p :: _ =>
let (p0, _) := p in
let (_, _) := p0 in
1 + CasePair_steps (fst p) +
(1 + CasePair_steps (fst p0) + (1 + Translate_steps (snd p) + 0))
end
else
match stack' with
| [] => 1 + Reset_steps stack' + 0
| _ :: _ => 0
end)))))
| _ => 0
end.
Arguments steps_step : simpl never.
Lemma SpecT__step (H:Heap) a P k (stack' : list (HAdd * list Tok * nat)) res nextState n' finalRes:
TripleT
≃≃([unfoldTailRecStep H (((a,P),k)::stack',res)%list = inl nextState;
loopSum n' (unfoldTailRecStep H) (((a,P),k)::stack',res) = Some (Some finalRes)],
[|Contains retr_heap H;Contains retr_nat_clos_ad a;Contains retr_pro P;Contains retr_nat_clos_var k; Contains retr_stack stack';
Contains retr_pro res;Void;Void;Void;Void|])
(steps_step H (((a,P),k)::stack') ) M__step
(fun r => ≃≃([
loopSum (pred n') (unfoldTailRecStep H) nextState = Some (Some finalRes);
match r with Some tt => nextState = ([],finalRes) | _ => fst nextState <> [] end;n' <> 0]
,[|Contains _ H|]
++let (stack2,res2) := nextState in
match stack2 with
| []%list => Vector.const Void 4
| ((a2,P2),k2)::stack2' => [|Contains retr_nat_clos_ad a2;Contains retr_pro P2;Contains retr_nat_clos_var k2;Contains retr_stack stack2'|]
end%list
++[|Contains retr_pro res2;Void;Void;Void;Void|])).
Proof.
hintros HnS Hloop.
eapply ConsequenceT with (Q2:=fun y => _). 2,3:reflexivity.
unfold M__step.
hstep.
{ cbn;hsteps_cbn. cbn. tspec_ext. }
2:{
destruct P;cbn;hintros [=]. cbn.
hstep. now hsteps_cbn. 2:reflexivity.
cbn. hintros _. hstep. now hsteps_cbn. 2:reflexivity.
cbn. hintros _. hstep. now hsteps_cbn. 2:reflexivity.
cbn. hintros _. hstep. {hsteps_cbn;cbn. tspec_ext. }
all:cbn.
- refine (_ : TripleT _ (match stack' with ((_,_),_)::_ => _ | _ => 0 end) _ _).
destruct stack' as [ |[[]]]; hintros [=].
injection HnS as [= <-].
destruct n'. now inv Hloop. cbn in Hloop.
remember (unfoldTailRecStep H ((h, l, n) :: stack', res)) as st.
cbn. hsteps_cbn. 1-3:try now cbn;tspec_ext. all:reflexivity. - refine (_ : TripleT _ (match stack' with []=> _ | _ => 0 end) _ _).
destruct stack';hintros [=].
injection HnS as [=<-].
hsteps_cbn.
{ destruct n' as [|[]]. 1,2:now discriminate Hloop. injection Hloop as ->. now tspec_ext. }
reflexivity.
-intros ? ->. reflexivity.
}
2:{cbn [fst implList]. intros ? ->. reflexivity. }
cbn. refine (_ : TripleT _ (match P with [] => _ | t::P => match t with appT => _ | _ => _ end end) _ _).
destruct P;hintros [=]. cbn in HnS.
eapply Switch_SpecTReg.
{cbn. hsteps_cbn. cbn. tspec_ext. }
{
destruct n'. 1:easy. cbn in Hloop. rewrite HnS in Hloop.
remember (unfoldTailRecStep H nextState) as ns'.
cbn. hintros [ y| ] Hy.
- subst t. cbn.
hstep. {hsteps_cbn. cbn. tspec_ext. }
cbn. intros _.
hstep.
+refine (_:TripleT _ (match y with retAT => _ | _ => _ end) _ (fun x => ≃≃([],match y with retAT => _ | _ => _ end))).
destruct y;cbn.
all:hsteps_cbn;cbn.
--now tspec_ext.
--hintros y' Hy'. hsteps_cbn;cbn. tspec_ext.
--reflexivity.
--cbn. tspec_ext.
--cbn. eapply ConsequenceT. apply Nop_SpecT. all:try reflexivity. cbn;intros. tspec_ext.
+cbn. destruct y;cbn in HnS|-*. all:injection HnS as [= <-];cbn.
all:intro;tspec_ext;easy.
+unfold Constr_S_steps,Cons_constant.time.
destruct y;cbn. refine (_ : _ <= (fun x => match x with Some _ => 16 | _ => _ end) _);[|shelve].
all:unfold CaseNat_steps;lia.
- destruct Hy as (x&Ht).
refine (_ : TripleT _ (match t with varT x => _ | _ => 0 end) _ _).
subst t.
hstep. now hsteps_cbn. 2:reflexivity.
cbn. intro. hstep. now hsteps_cbn.
cbn. intro. hstep.
+cbn. hsteps_cbn. cbn. tspec_ext.
+hintros Hlt. rewrite <- Hlt in HnS. cbn.
hstep. now hsteps_cbn. 2:reflexivity.
cbn;intros _. hstep. now hsteps_cbn. 2:reflexivity.
cbn;intros _.
refine (_ : TripleT _ match lookup H a (x-k) with Some (_,_) => _ | _ => 0 end _ _).
hstep. 1:{ hsteps_cbn;cbn. refine (TripleT_RemoveSpace _ (Q:= fun _ => _) (Q':= fun _ => _));intros.
eapply ConsequenceT. eapply Lookup_SpecT_space. now tspec_ext. cbn. intros. reflexivity. reflexivity. }
destruct lookup as [[]|]eqn:Hlook;hintros [=].
*injection HnS as [= <-]. cbn. hsteps_cbn;cbn.
1-4:try tspec_ext.
{ eapply ConsequenceT. notypeclasses refine (Translate_SpecT _ _ _ _ ).
3:tspec_ext. cbn;intro. all:reflexivity.
}
1-5:cbn;try solve [tspec_ext].
now tspec_ext. 1-10:reflexivity.
refine (_ : _ <= match lookup H a (x-k) with Some (_,_) => _ | _ => 0 end).
rewrite Hlook. ring_simplify. reflexivity.
* destruct lookup eqn:Hlook;hintros [=]. now exfalso.
* cbn. destruct lookup as [[]|]. 2:exfalso;easy.
intros ? ->. ring_simplify; reflexivity.
+ cbn. hintros Hlt. rewrite <- Hlt in HnS.
injection HnS as [= <-]. cbn.
hsteps_cbn;cbn. 1-2:now tspec_ext. 1-2:reflexivity. ring_simplify;reflexivity. now tspec_ext.
+cbn. intros ? ->. reflexivity.
+reflexivity.
}
cbn. intros [c|] Hy.
2:{destruct Hy as (?&->). reflexivity. }
rewrite Hy. destruct c;cbn;reflexivity.
unfold steps_step. reflexivity. Unshelve. all:exact 0.
Qed.
Definition M__loop := While M__step.
Local Arguments unfoldTailRecStep : simpl never.
Lemma tspec_revertPure (sig: finType) (n : nat) (P0:Prop) P (Ps : SpecV sig n) Q:
P0
-> Entails (tspec (P0::P,Ps)) Q
-> Entails (tspec (P,Ps)) Q.
Proof.
setoid_rewrite Entails_iff. unfold tspec;cbn. easy.
Qed.
Fixpoint steps_loop H n x :=
match n with
0 => 0
| S n => 1 + steps_step H (fst x) +
match unfoldTailRecStep H x with
inl y=> steps_loop H n y
| inr y=> 0
end
end.
Set Keyed Unification.
Lemma SpecT__loop (H:Heap) a P k (stack' : list (HAdd * list Tok * nat)) res n' finalRes:
TripleT
≃≃([loopSum n' (unfoldTailRecStep H) (((a,P),k)::stack',res) = Some (Some finalRes)]
,[|Contains retr_heap H;Contains retr_nat_clos_ad a;Contains retr_pro P;Contains retr_nat_clos_var k; Contains retr_stack stack';
Contains retr_pro res;Void;Void;Void;Void|])
(steps_loop H n' ((a,P,k)::stack',res)) M__loop
(fun r => ≃≃([]
,[|Contains _ H;Void;Void;Void;Void;Contains retr_pro finalRes;Void;Void;Void;Void|])).
Proof.
refine (While_SpecTReg _ _ (a,P,k,stack',res,n')
(PRE := fun '(a,P,k,stack',res,n') => (_,_)) (POST := fun '(a,P,k,stack',res,n') y => (_,_))
(INV := fun '(a,P,k,stack',res,n') y => _ )
(f__step := fun '(a,P,k,stack',res,n') => _)
(f__loop := fun '(a,P,k,stack',res,n') => _ ));
clear a P k stack' res n';intros [[[[[a P] k]stack']res]n'].
{ hsteps_cbn.
- hintros Hloop.
eapply (ConsequenceT
(Q1 := fun y => _)
(Q2:= fun y => _)).
now eapply (SpecT__step H a P k stack' res match unfoldTailRecStep H ((a, P, k) :: stack', res) with
| inl x' => _ | _ => ([],[]) end _ _ ).
3:reflexivity.
{ destruct unfoldTailRecStep eqn:H'. { tspec_ext. reflexivity. eassumption. }
exfalso.
destruct n'; cbn. now inv Hloop. cbn in Hloop. rewrite H' in Hloop.
exfalso. unfold unfoldTailRecStep in H'. repeat destruct _ in H'. all:congruence. }
{ intros ?. reflexivity. }
}
cbn. split.
+ intros Hloop [] Hloop' Hloop'' Hn'. split.
{
destruct unfoldTailRecStep as [res'|]eqn:?.
*subst res'. reflexivity.
*injection Hloop'' as [= <-]. reflexivity.
}
destruct n'. now contradiction Hn'. cbn. nia.
+intros Hloop' Hnil Hn'.
destruct (unfoldTailRecStep H ((a, P, k) :: stack', res)) as [[[| [[a' P'] k'] stack''] res'']|] eqn:H' in Hloop',Hnil.
{exfalso;clear - Hnil;easy. }
clear Hnil.
eexists (a',P',k',stack'',res'',(pred n')). split.
-rewrite H'.
rewrite Hloop'. tspec_ext.
- split. 2:easy. destruct n';cbn. exfalso;easy. rewrite H' at 1. reflexivity.
-easy.
Qed.
Definition M :=
WriteValue ( []) ⇑ retr_stack @ [|i_stack'|];;
WriteValue ( []) ⇑ retr_pro @ [|i_res|];;
M__loop.
Definition steps H a k s s' := 2 * WriteValue_steps 1 +
steps_loop H (L_facts.size s' * 3 + 2) ([(a, compile s, k)], []) + 2.
Lemma SpecT (H:Heap) a k s s':
unfolds H a k s s' ->
TripleT
≃≃([]
,[|Contains retr_heap H;Contains retr_nat_clos_ad a;Contains retr_pro (compile s);Contains retr_nat_clos_var k; Void;
Void;Void;Void;Void;Void|])
(steps H a k s s') M
(fun r => ≃≃([]
,[|Contains _ H;Void;Void;Void;Void;Contains retr_pro (rev (compile s'));Void;Void;Void;Void|])).
Proof.
unfold M. intros H'.
eapply unfoldTailRecStep_complete in H'. 2:reflexivity.
eapply ConsequenceT_pre. 2:reflexivity.
hsteps_cbn;cbn. 1,2,4,5:reflexivity.
eapply ConsequenceT_pre. 3:reflexivity.
-eapply SpecT__loop.
- rewrite H'. tspec_ext.
-unfold steps. nia.
Qed.
End Fix.
End Private_UnfoldClos.
Module UnfoldClos.
Section Fix.
Variable Σ : finType.
Variable retr_stack : Retract (sigList (sigPair sigHClos sigNat)) Σ.
Variable retr_heap : Retract sigHeap Σ.
Variable retr_clos : Retract sigHClos Σ.
Definition retr_pro : Retract sigPro Σ := ComposeRetract retr_clos _.
Definition retr_clos_stack : Retract sigHClos Σ := ComposeRetract retr_stack _.
Definition retr_stackEl : Retract (sigPair sigHClos sigNat) Σ :=
(ComposeRetract retr_stack _).
Definition retr_nat_stack : Retract sigNat Σ :=
ComposeRetract retr_stackEl
(Retract_sigPair_Y _ _) .
Local Notation n := 10 (only parsing).
Local Notation i_io := Fin0 (only parsing).
Local Notation i_H := Fin1 (only parsing).
Definition M : pTM (Σ) ^+ unit n:=
Translate retr_clos retr_clos_stack @[|i_io|];;
CasePair _ _ ⇑ retr_clos_stack @ [|i_io;Fin2|];;
WriteValue ( 1) ⇑ Private_UnfoldClos.retr_nat_clos_var retr_stack @ [|Fin3|];;
Private_UnfoldClos.M retr_stack retr_heap @ [|i_H;Fin2;i_io;Fin3;Fin4;Fin5;Fin6;Fin7;Fin8;Fin9|];;
Translate (Private_UnfoldClos.retr_pro retr_stack) retr_pro @ [|Fin5|];;
WriteValue ( [retT]) ⇑ retr_pro @ [|i_io|];;
Rev_Append _ ⇑ retr_pro @ [| Fin5;i_io;Fin6 |];;
Cons_constant.M lamT ⇑ retr_pro @ [| i_io|].
Definition steps H '(a',P) t' :=
match t' with lam t' =>
match decompile 0 P [] with
inl [s'] =>
1 + Translate_steps (a', compile s') +
(1 + CasePair_steps (fst (a', compile s')) +
(1 + WriteValue_steps (size 1) +
(1 + Private_UnfoldClos.steps H a' 1 s' t' +
(1 + Translate_steps (rev (compile t')) +
(1 + WriteValue_steps (size [retT]) +
(1 + Rev_Append_steps Encode_Com (rev (compile t')) +
Cons_constant.time lamT))))))
| _ => 0
end
| _ => 0 end.
Lemma SpecT (H:Heap) g s:
reprC H g s ->
TripleT
≃≃([]
,[|Contains retr_clos g;Contains retr_heap H;Void;Void;Void;Void;Void;Void;Void;Void|])
(steps H g s) M
(fun r => ≃≃([]
,[|Contains retr_pro (compile s);Contains retr_heap H;Void;Void;Void;Void;Void;Void;Void;Void|])).
Proof.
unfold steps.
intros (s'&t'&a'&Hg&Hs&Hunf)%reprC_elim_deep.
remember (compile s) as P.
subst g s. rewrite decompile_correct.
unfold M.
eapply ConsequenceT. 2:reflexivity.
do 3 hstep_seq;[].
hstep_seq;[|].
{
hsteps_cbn;cbn. eapply ConsequenceT_pre.
now refine (Private_UnfoldClos.SpecT _ _ Hunf).
now tspec_ext.
reflexivity.
}
cbn.
do 3 (hstep_seq;[]).
hsteps_cbn. now tspec_ext. {intro;cbn. tspec_ext. f_equal. rewrite rev_involutive. now subst. }
reflexivity.
Qed.
End Fix.
End UnfoldClos.
Require Import Vector List.
Require Import Undecidability.TM.Util.TM_facts.
From Undecidability Require Import ProgrammingTools WriteValue Copy ListTM JumpTargetTM WriteValue.
From Undecidability.TM.L Require Import Alphabets LookupTM.
From Undecidability.L.AbstractMachines.FlatPro Require Import LM_heap_def LM_heap_correct UnfoldClos.
From Undecidability.TM Require Import CaseList CasePair CaseCom CaseNat NatSub.
From Undecidability Require Import L.L TM.TM Hoare.
From Undecidability.L.Prelim Require Import LoopSum.
Require Import Ring Arith.
Import VectorNotations.
Import ListNotations.
Import Coq.Init.Datatypes List.
Open Scope string_scope.
Require Import String.
Set Default Proof Using "Type".
From Undecidability Require Cons_constant.
Module Private_UnfoldClos.
Section Fix.
Variable Σ : finType.
Variable retr_stack : Retract (sigList (sigPair sigHClos sigNat)) Σ.
Variable retr_heap : Retract sigHeap Σ.
Definition retr_clos : Retract sigHClos Σ := ComposeRetract retr_stack _.
Definition retr_pro : Retract sigPro Σ := ComposeRetract retr_clos _.
Definition retr_com : Retract sigCom Σ := ComposeRetract retr_pro _.
Definition retr_nat_clos_ad' : Retract sigNat sigHClos := Retract_sigPair_X _ _.
Definition retr_nat_clos_ad : Retract sigNat Σ := ComposeRetract retr_clos retr_nat_clos_ad'.
Definition retr_nat_clos_var' : Retract sigNat sigHClos := Retract_sigPair_Y _ _.
Definition retr_nat_clos_var : Retract sigNat Σ := ComposeRetract retr_clos retr_nat_clos_var'.
Definition retr_stackEl : Retract (sigPair sigHClos sigNat) Σ :=
(ComposeRetract retr_stack _).
Definition retr_nat_stack : Retract sigNat Σ :=
ComposeRetract retr_stackEl
(Retract_sigPair_Y _ _) .
Local Definition Lookup := Lookup retr_clos retr_heap.
Local Notation i_H := Fin0 (only parsing).
Local Notation i_a := Fin1 (only parsing).
Local Notation i_P := Fin2 (only parsing).
Local Notation i_k := Fin3 (only parsing).
Local Notation i_stack' := Fin4 (only parsing).
Local Notation i_res := Fin5 (only parsing).
Local Notation i_aux1 := Fin6 (only parsing).
Local Notation i_aux2 := Fin7 (only parsing).
Local Notation i_aux3 := Fin8 (only parsing).
Local Notation i_aux4 := Fin9 (only parsing).
Definition M__step : pTM (Σ) ^+ (option unit) 10 :=
If
(CaseList _ ⇑ retr_pro @ [| i_P;i_aux1|])
(Switch (CaseCom ⇑ retr_com @ [|i_aux1|])
(fun i : option ACom=> match i with
| Some c =>
Cons_constant.M (ACom2Com c)⇑ retr_pro @ [| i_res|];;
Return
match c return match c with _ => _ end with
| retAT => (CaseNat ⇑ retr_nat_clos_var @ [|i_k|];;Return Nop tt)
| lamAT => Constr_S ⇑ retr_nat_clos_var @ [|i_k|]
| appAT => Nop
end
None
| None =>
CopyValue _ @ [| i_k;i_aux2|];;
CopyValue _ @ [| i_aux1;i_aux3|];;
If (Subtract ⇑ retr_nat_clos_var @ [|i_aux3;i_aux2|])
(Reset _ @ [|i_aux1|];;
CopyValue _ @ [| i_a;i_aux4|];;
If (Lookup @ [|i_H;i_aux4;i_aux3;i_aux1;i_aux2|])
(Cons_constant.M lamT⇑ retr_pro @ [| i_res|];;
Cons_constant.M retT⇑ retr_pro @ [| i_P|];;
Constr_S ⇑ retr_nat_clos_var @ [|i_k|];;
Constr_pair _ _ ⇑ retr_clos @ [|i_a;i_P|];;
Reset _ @ [|i_a|];;
Translate retr_nat_clos_var retr_nat_stack @[|i_k|];;
Constr_pair _ _ ⇑ retr_stackEl @ [|i_P;i_k|];;
MoveValue _ @ [|i_aux1;i_P|];;
Constr_cons _ ⇑ retr_stack @ [| i_stack';i_k|];;
Reset _ @ [|i_k|];;
CasePair _ _ ⇑ retr_clos @ [|i_P;i_a|];;
Return (WriteValue ( 1) ⇑ retr_nat_clos_var @ [|i_k|]) None
)
(Return Diverge (Some tt))
)
(Return
(Constr_varT ⇑ retr_com @ [|i_aux1|];;
Constr_cons _ ⇑ retr_pro @ [| i_res;i_aux1|];;
Reset _ @ [|i_aux1|];;
Reset _ @ [|i_aux3|])
None)
end)
)
( Reset _ @ [|i_P|];;
Reset _ @ [|i_a|];;
Reset _ @ [|i_k|];;
If
(CaseList _ ⇑ retr_stack @ [| i_stack';i_k|])
(CasePair _ _ ⇑ retr_stackEl @ [|i_k;i_P|];;
CasePair _ _ ⇑ retr_clos @ [|i_P;i_a|];;
Translate retr_nat_stack retr_nat_clos_var @[|i_k|];;
Return Nop None
)
(Reset _ @ [|i_stack'|];;Return Nop (Some tt))
).
Local Arguments "+"%nat : simpl never.
Local Arguments "*"%nat : simpl never.
Local Arguments UpToC.f__UpToC {_ _} _ _.
Open Scope nat_scope.
Definition steps_step H (stack : list (HAdd * list Tok * nat)) :=
match stack with
(a,P,k)::stack' =>
1 + CaseList_steps P +
(if match P with
| [] => false
| _ :: _ => true
end
then
match P with
| [] => 0
| t :: P0 =>
match t with
| varT n =>
1 + CaseCom_steps +
(1 + CopyValue_steps k +
(1 + CopyValue_steps n +
(1 + UpToC.f__UpToC (projT1 Subtract_SpecT) k +
(if k <=? n
then
1 + Reset_steps n +
(1 + CopyValue_steps a +
match lookup H a (n - k) with
| Some h =>
let (_, _) := h in
Lookup_steps H a (n - k) + Cons_constant.time lamT +
Cons_constant.time retT + Constr_S_steps +
Constr_pair_steps a + Reset_steps a +
Translate_steps (1 + k) +
Constr_pair_steps (a, retT :: P0) +
MoveValue_steps h (a, retT :: P0) +
Constr_cons_steps (a, retT :: P0, 1 + k) +
Reset_steps (a, retT :: P0, 1 + k) +
CasePair_steps (fst h) + WriteValue_steps 2 +
Pos.to_nat 11 + 1
| None => 0
end)
else
Constr_varT_steps + Constr_cons_steps t + Reset_steps t +
Reset_steps (n - k) + Pos.to_nat 3))))
| _ => 1 + CaseCom_steps + 16
end
end
else
1 + Reset_steps P +
(1 + Reset_steps a +
(1 + Reset_steps k +
(1 + CaseList_steps stack' +
(if match stack' with
| [] => false
| _ :: _ => true
end
then
match stack' with
| [] => 0
| p :: _ =>
let (p0, _) := p in
let (_, _) := p0 in
1 + CasePair_steps (fst p) +
(1 + CasePair_steps (fst p0) + (1 + Translate_steps (snd p) + 0))
end
else
match stack' with
| [] => 1 + Reset_steps stack' + 0
| _ :: _ => 0
end)))))
| _ => 0
end.
Arguments steps_step : simpl never.
Lemma SpecT__step (H:Heap) a P k (stack' : list (HAdd * list Tok * nat)) res nextState n' finalRes:
TripleT
≃≃([unfoldTailRecStep H (((a,P),k)::stack',res)%list = inl nextState;
loopSum n' (unfoldTailRecStep H) (((a,P),k)::stack',res) = Some (Some finalRes)],
[|Contains retr_heap H;Contains retr_nat_clos_ad a;Contains retr_pro P;Contains retr_nat_clos_var k; Contains retr_stack stack';
Contains retr_pro res;Void;Void;Void;Void|])
(steps_step H (((a,P),k)::stack') ) M__step
(fun r => ≃≃([
loopSum (pred n') (unfoldTailRecStep H) nextState = Some (Some finalRes);
match r with Some tt => nextState = ([],finalRes) | _ => fst nextState <> [] end;n' <> 0]
,[|Contains _ H|]
++let (stack2,res2) := nextState in
match stack2 with
| []%list => Vector.const Void 4
| ((a2,P2),k2)::stack2' => [|Contains retr_nat_clos_ad a2;Contains retr_pro P2;Contains retr_nat_clos_var k2;Contains retr_stack stack2'|]
end%list
++[|Contains retr_pro res2;Void;Void;Void;Void|])).
Proof.
hintros HnS Hloop.
eapply ConsequenceT with (Q2:=fun y => _). 2,3:reflexivity.
unfold M__step.
hstep.
{ cbn;hsteps_cbn. cbn. tspec_ext. }
2:{
destruct P;cbn;hintros [=]. cbn.
hstep. now hsteps_cbn. 2:reflexivity.
cbn. hintros _. hstep. now hsteps_cbn. 2:reflexivity.
cbn. hintros _. hstep. now hsteps_cbn. 2:reflexivity.
cbn. hintros _. hstep. {hsteps_cbn;cbn. tspec_ext. }
all:cbn.
- refine (_ : TripleT _ (match stack' with ((_,_),_)::_ => _ | _ => 0 end) _ _).
destruct stack' as [ |[[]]]; hintros [=].
injection HnS as [= <-].
destruct n'. now inv Hloop. cbn in Hloop.
remember (unfoldTailRecStep H ((h, l, n) :: stack', res)) as st.
cbn. hsteps_cbn. 1-3:try now cbn;tspec_ext. all:reflexivity. - refine (_ : TripleT _ (match stack' with []=> _ | _ => 0 end) _ _).
destruct stack';hintros [=].
injection HnS as [=<-].
hsteps_cbn.
{ destruct n' as [|[]]. 1,2:now discriminate Hloop. injection Hloop as ->. now tspec_ext. }
reflexivity.
-intros ? ->. reflexivity.
}
2:{cbn [fst implList]. intros ? ->. reflexivity. }
cbn. refine (_ : TripleT _ (match P with [] => _ | t::P => match t with appT => _ | _ => _ end end) _ _).
destruct P;hintros [=]. cbn in HnS.
eapply Switch_SpecTReg.
{cbn. hsteps_cbn. cbn. tspec_ext. }
{
destruct n'. 1:easy. cbn in Hloop. rewrite HnS in Hloop.
remember (unfoldTailRecStep H nextState) as ns'.
cbn. hintros [ y| ] Hy.
- subst t. cbn.
hstep. {hsteps_cbn. cbn. tspec_ext. }
cbn. intros _.
hstep.
+refine (_:TripleT _ (match y with retAT => _ | _ => _ end) _ (fun x => ≃≃([],match y with retAT => _ | _ => _ end))).
destruct y;cbn.
all:hsteps_cbn;cbn.
--now tspec_ext.
--hintros y' Hy'. hsteps_cbn;cbn. tspec_ext.
--reflexivity.
--cbn. tspec_ext.
--cbn. eapply ConsequenceT. apply Nop_SpecT. all:try reflexivity. cbn;intros. tspec_ext.
+cbn. destruct y;cbn in HnS|-*. all:injection HnS as [= <-];cbn.
all:intro;tspec_ext;easy.
+unfold Constr_S_steps,Cons_constant.time.
destruct y;cbn. refine (_ : _ <= (fun x => match x with Some _ => 16 | _ => _ end) _);[|shelve].
all:unfold CaseNat_steps;lia.
- destruct Hy as (x&Ht).
refine (_ : TripleT _ (match t with varT x => _ | _ => 0 end) _ _).
subst t.
hstep. now hsteps_cbn. 2:reflexivity.
cbn. intro. hstep. now hsteps_cbn.
cbn. intro. hstep.
+cbn. hsteps_cbn. cbn. tspec_ext.
+hintros Hlt. rewrite <- Hlt in HnS. cbn.
hstep. now hsteps_cbn. 2:reflexivity.
cbn;intros _. hstep. now hsteps_cbn. 2:reflexivity.
cbn;intros _.
refine (_ : TripleT _ match lookup H a (x-k) with Some (_,_) => _ | _ => 0 end _ _).
hstep. 1:{ hsteps_cbn;cbn. refine (TripleT_RemoveSpace _ (Q:= fun _ => _) (Q':= fun _ => _));intros.
eapply ConsequenceT. eapply Lookup_SpecT_space. now tspec_ext. cbn. intros. reflexivity. reflexivity. }
destruct lookup as [[]|]eqn:Hlook;hintros [=].
*injection HnS as [= <-]. cbn. hsteps_cbn;cbn.
1-4:try tspec_ext.
{ eapply ConsequenceT. notypeclasses refine (Translate_SpecT _ _ _ _ ).
3:tspec_ext. cbn;intro. all:reflexivity.
}
1-5:cbn;try solve [tspec_ext].
now tspec_ext. 1-10:reflexivity.
refine (_ : _ <= match lookup H a (x-k) with Some (_,_) => _ | _ => 0 end).
rewrite Hlook. ring_simplify. reflexivity.
* destruct lookup eqn:Hlook;hintros [=]. now exfalso.
* cbn. destruct lookup as [[]|]. 2:exfalso;easy.
intros ? ->. ring_simplify; reflexivity.
+ cbn. hintros Hlt. rewrite <- Hlt in HnS.
injection HnS as [= <-]. cbn.
hsteps_cbn;cbn. 1-2:now tspec_ext. 1-2:reflexivity. ring_simplify;reflexivity. now tspec_ext.
+cbn. intros ? ->. reflexivity.
+reflexivity.
}
cbn. intros [c|] Hy.
2:{destruct Hy as (?&->). reflexivity. }
rewrite Hy. destruct c;cbn;reflexivity.
unfold steps_step. reflexivity. Unshelve. all:exact 0.
Qed.
Definition M__loop := While M__step.
Local Arguments unfoldTailRecStep : simpl never.
Lemma tspec_revertPure (sig: finType) (n : nat) (P0:Prop) P (Ps : SpecV sig n) Q:
P0
-> Entails (tspec (P0::P,Ps)) Q
-> Entails (tspec (P,Ps)) Q.
Proof.
setoid_rewrite Entails_iff. unfold tspec;cbn. easy.
Qed.
Fixpoint steps_loop H n x :=
match n with
0 => 0
| S n => 1 + steps_step H (fst x) +
match unfoldTailRecStep H x with
inl y=> steps_loop H n y
| inr y=> 0
end
end.
Set Keyed Unification.
Lemma SpecT__loop (H:Heap) a P k (stack' : list (HAdd * list Tok * nat)) res n' finalRes:
TripleT
≃≃([loopSum n' (unfoldTailRecStep H) (((a,P),k)::stack',res) = Some (Some finalRes)]
,[|Contains retr_heap H;Contains retr_nat_clos_ad a;Contains retr_pro P;Contains retr_nat_clos_var k; Contains retr_stack stack';
Contains retr_pro res;Void;Void;Void;Void|])
(steps_loop H n' ((a,P,k)::stack',res)) M__loop
(fun r => ≃≃([]
,[|Contains _ H;Void;Void;Void;Void;Contains retr_pro finalRes;Void;Void;Void;Void|])).
Proof.
refine (While_SpecTReg _ _ (a,P,k,stack',res,n')
(PRE := fun '(a,P,k,stack',res,n') => (_,_)) (POST := fun '(a,P,k,stack',res,n') y => (_,_))
(INV := fun '(a,P,k,stack',res,n') y => _ )
(f__step := fun '(a,P,k,stack',res,n') => _)
(f__loop := fun '(a,P,k,stack',res,n') => _ ));
clear a P k stack' res n';intros [[[[[a P] k]stack']res]n'].
{ hsteps_cbn.
- hintros Hloop.
eapply (ConsequenceT
(Q1 := fun y => _)
(Q2:= fun y => _)).
now eapply (SpecT__step H a P k stack' res match unfoldTailRecStep H ((a, P, k) :: stack', res) with
| inl x' => _ | _ => ([],[]) end _ _ ).
3:reflexivity.
{ destruct unfoldTailRecStep eqn:H'. { tspec_ext. reflexivity. eassumption. }
exfalso.
destruct n'; cbn. now inv Hloop. cbn in Hloop. rewrite H' in Hloop.
exfalso. unfold unfoldTailRecStep in H'. repeat destruct _ in H'. all:congruence. }
{ intros ?. reflexivity. }
}
cbn. split.
+ intros Hloop [] Hloop' Hloop'' Hn'. split.
{
destruct unfoldTailRecStep as [res'|]eqn:?.
*subst res'. reflexivity.
*injection Hloop'' as [= <-]. reflexivity.
}
destruct n'. now contradiction Hn'. cbn. nia.
+intros Hloop' Hnil Hn'.
destruct (unfoldTailRecStep H ((a, P, k) :: stack', res)) as [[[| [[a' P'] k'] stack''] res'']|] eqn:H' in Hloop',Hnil.
{exfalso;clear - Hnil;easy. }
clear Hnil.
eexists (a',P',k',stack'',res'',(pred n')). split.
-rewrite H'.
rewrite Hloop'. tspec_ext.
- split. 2:easy. destruct n';cbn. exfalso;easy. rewrite H' at 1. reflexivity.
-easy.
Qed.
Definition M :=
WriteValue ( []) ⇑ retr_stack @ [|i_stack'|];;
WriteValue ( []) ⇑ retr_pro @ [|i_res|];;
M__loop.
Definition steps H a k s s' := 2 * WriteValue_steps 1 +
steps_loop H (L_facts.size s' * 3 + 2) ([(a, compile s, k)], []) + 2.
Lemma SpecT (H:Heap) a k s s':
unfolds H a k s s' ->
TripleT
≃≃([]
,[|Contains retr_heap H;Contains retr_nat_clos_ad a;Contains retr_pro (compile s);Contains retr_nat_clos_var k; Void;
Void;Void;Void;Void;Void|])
(steps H a k s s') M
(fun r => ≃≃([]
,[|Contains _ H;Void;Void;Void;Void;Contains retr_pro (rev (compile s'));Void;Void;Void;Void|])).
Proof.
unfold M. intros H'.
eapply unfoldTailRecStep_complete in H'. 2:reflexivity.
eapply ConsequenceT_pre. 2:reflexivity.
hsteps_cbn;cbn. 1,2,4,5:reflexivity.
eapply ConsequenceT_pre. 3:reflexivity.
-eapply SpecT__loop.
- rewrite H'. tspec_ext.
-unfold steps. nia.
Qed.
End Fix.
End Private_UnfoldClos.
Module UnfoldClos.
Section Fix.
Variable Σ : finType.
Variable retr_stack : Retract (sigList (sigPair sigHClos sigNat)) Σ.
Variable retr_heap : Retract sigHeap Σ.
Variable retr_clos : Retract sigHClos Σ.
Definition retr_pro : Retract sigPro Σ := ComposeRetract retr_clos _.
Definition retr_clos_stack : Retract sigHClos Σ := ComposeRetract retr_stack _.
Definition retr_stackEl : Retract (sigPair sigHClos sigNat) Σ :=
(ComposeRetract retr_stack _).
Definition retr_nat_stack : Retract sigNat Σ :=
ComposeRetract retr_stackEl
(Retract_sigPair_Y _ _) .
Local Notation n := 10 (only parsing).
Local Notation i_io := Fin0 (only parsing).
Local Notation i_H := Fin1 (only parsing).
Definition M : pTM (Σ) ^+ unit n:=
Translate retr_clos retr_clos_stack @[|i_io|];;
CasePair _ _ ⇑ retr_clos_stack @ [|i_io;Fin2|];;
WriteValue ( 1) ⇑ Private_UnfoldClos.retr_nat_clos_var retr_stack @ [|Fin3|];;
Private_UnfoldClos.M retr_stack retr_heap @ [|i_H;Fin2;i_io;Fin3;Fin4;Fin5;Fin6;Fin7;Fin8;Fin9|];;
Translate (Private_UnfoldClos.retr_pro retr_stack) retr_pro @ [|Fin5|];;
WriteValue ( [retT]) ⇑ retr_pro @ [|i_io|];;
Rev_Append _ ⇑ retr_pro @ [| Fin5;i_io;Fin6 |];;
Cons_constant.M lamT ⇑ retr_pro @ [| i_io|].
Definition steps H '(a',P) t' :=
match t' with lam t' =>
match decompile 0 P [] with
inl [s'] =>
1 + Translate_steps (a', compile s') +
(1 + CasePair_steps (fst (a', compile s')) +
(1 + WriteValue_steps (size 1) +
(1 + Private_UnfoldClos.steps H a' 1 s' t' +
(1 + Translate_steps (rev (compile t')) +
(1 + WriteValue_steps (size [retT]) +
(1 + Rev_Append_steps Encode_Com (rev (compile t')) +
Cons_constant.time lamT))))))
| _ => 0
end
| _ => 0 end.
Lemma SpecT (H:Heap) g s:
reprC H g s ->
TripleT
≃≃([]
,[|Contains retr_clos g;Contains retr_heap H;Void;Void;Void;Void;Void;Void;Void;Void|])
(steps H g s) M
(fun r => ≃≃([]
,[|Contains retr_pro (compile s);Contains retr_heap H;Void;Void;Void;Void;Void;Void;Void;Void|])).
Proof.
unfold steps.
intros (s'&t'&a'&Hg&Hs&Hunf)%reprC_elim_deep.
remember (compile s) as P.
subst g s. rewrite decompile_correct.
unfold M.
eapply ConsequenceT. 2:reflexivity.
do 3 hstep_seq;[].
hstep_seq;[|].
{
hsteps_cbn;cbn. eapply ConsequenceT_pre.
now refine (Private_UnfoldClos.SpecT _ _ Hunf).
now tspec_ext.
reflexivity.
}
cbn.
do 3 (hstep_seq;[]).
hsteps_cbn. now tspec_ext. {intro;cbn. tspec_ext. f_equal. rewrite rev_involutive. now subst. }
reflexivity.
Qed.
End Fix.
End UnfoldClos.