Require Import Undecidability.Synthetic.Undecidability.
From Undecidability.Synthetic Require Import DecidabilityFacts EnumerabilityFacts.
Require Import Undecidability.TM.SBTM.
Require Undecidability.TM.Reductions.HaltTM_1_to_SBTM_HALT.
Require Undecidability.TM.Enumerators.SBTM_HALT_enum.
Lemma complement_SBTM_HALT_undec :
undecidable (complement SBTM_HALT).
Proof.
intros H.
eapply (dec_count_enum H), enumerator_enumerable.
apply enumerator__T_sigT.
- now apply (proj2_sig SBTM_HALT_enum.SBTM_enumeration).
- intros M. now apply (proj2_sig (SBTM_HALT_enum.config_enumeration M)).
Qed.
Lemma SBTM_HALT_undec :
undecidable SBTM_HALT.
Proof.
intros H. now apply complement_SBTM_HALT_undec, dec_compl.
Qed.
From Undecidability.Synthetic Require Import DecidabilityFacts EnumerabilityFacts.
Require Import Undecidability.TM.SBTM.
Require Undecidability.TM.Reductions.HaltTM_1_to_SBTM_HALT.
Require Undecidability.TM.Enumerators.SBTM_HALT_enum.
Lemma complement_SBTM_HALT_undec :
undecidable (complement SBTM_HALT).
Proof.
intros H.
eapply (dec_count_enum H), enumerator_enumerable.
apply enumerator__T_sigT.
- now apply (proj2_sig SBTM_HALT_enum.SBTM_enumeration).
- intros M. now apply (proj2_sig (SBTM_HALT_enum.config_enumeration M)).
Qed.
Lemma SBTM_HALT_undec :
undecidable SBTM_HALT.
Proof.
intros H. now apply complement_SBTM_HALT_undec, dec_compl.
Qed.