Require Import List Arith Bool Lia Eqdep_dec.
From Undecidability.Shared.Libs.DLW.Utils
Require Import utils_tac utils_list utils_nat finite.
From Undecidability.Shared.Libs.DLW.Vec
Require Import pos vec.
From Undecidability.TRAKHTENBROT
Require Import notations utils fol_ops fo_sig fo_terms fo_logic fo_sat Sig2_SigSSn1.
Import fol_notations.
Set Implicit Arguments.
Tactic Notation "iff" "equal" := apply fol_equiv_ext.
Local Notation ø := vec_nil.
Section Sig_n1_Sig.
Variable (n : nat) (Σ' : fo_signature) (f : syms Σ') (p : rels Σ').
Notation Σ := (Σn1 n).
Hypothesis (Hf : ar_syms _ f = n).
Hypothesis (Hp : ar_rels _ p = 1).
Let Fixpoint convert_t (t : fo_term (ar_syms Σ)) : fo_term (ar_syms Σ').
Proof.
refine (match t with
| in_var i => in_var i
| in_fot s v => @in_fot _ (ar_syms Σ') f (vec_map convert_t (cast v _))
end); now simpl.
Defined.
Fixpoint Σn1_Σ (A : fol_form Σ) : fol_form Σ'.
Proof.
refine (match A with
| ⊥ => ⊥
| fol_atom _ v => fol_atom p (vec_map convert_t (cast v _))
| fol_bin b A B => fol_bin b (Σn1_Σ A) (Σn1_Σ B)
| fol_quant q A => fol_quant q (Σn1_Σ A)
end); now simpl.
Defined.
Notation convert := Σn1_Σ.
Section soundness.
Variables (X : Type) (M : fo_model Σ X) (phi : nat -> X).
Let M' : fo_model Σ' X.
Proof.
split.
+ intros s.
destruct (eq_nat_dec (ar_syms _ s) n) as [ E | D ].
* intros v; apply (fom_syms M tt); revert v; rewrite E; trivial.
* intros; apply (phi 0).
+ intros r.
destruct (eq_nat_dec (ar_rels _ r) 1) as [ E | D ].
* intros v; apply (fom_rels M tt); revert v; rewrite E; trivial.
* intros; exact True.
Defined.
Let convert_t_sound t φ : fo_term_sem M φ t = fo_term_sem M' φ (convert_t t).
Proof.
induction t as [ i | [] v IH ]; simpl; auto.
destruct (eq_nat_dec (ar_syms Σ' f) n) as [ H | [] ]; auto.
rewrite vec_map_map; generalize H Hf; intros -> H'.
unfold eq_rect_r; simpl; f_equal.
apply vec_pos_ext; intros j; rewrite !vec_pos_map.
rewrite IH; repeat f_equal.
rewrite (eq_nat_pirr H' eq_refl); auto.
Qed.
Let convert_sound A φ : fol_sem M φ A <-> fol_sem M' φ (convert A).
Proof.
revert φ.
induction A as [ | [] v | b A HA B HB | q A HA ]; intros φ.
+ simpl; tauto.
+ simpl.
destruct (eq_nat_dec (ar_rels Σ' p) 1) as [ H | [] ]; auto.
generalize H Hp; intros -> H'.
unfold eq_rect_r; simpl; f_equal.
rewrite (eq_nat_pirr H' eq_refl); simpl.
rewrite !vec_map_map.
apply fol_equiv_ext; f_equal.
apply vec_pos_ext; intros j; rewrite !vec_pos_map; auto.
+ simpl; apply fol_bin_sem_ext; auto.
+ simpl; apply fol_quant_sem_ext; intro; auto.
Qed.
Hypothesis (Xfin : finite_t X)
(Mdec : fo_model_dec M)
(A : fol_form Σ)
(HA : fol_sem M phi A).
Local Fact convert_soundness : fo_form_fin_dec_SAT (convert A).
Proof.
exists X, M', Xfin.
exists.
{ intros r v; simpl in *.
destruct (eq_nat_dec (ar_rels Σ' r) 1); try tauto; apply Mdec. }
exists phi; apply convert_sound; auto.
Qed.
End soundness.
Section completeness.
Variables (X : Type) (M' : fo_model Σ' X).
Let M : fo_model Σ X.
Proof.
split.
+ intros []; simpl; intros v.
apply (fom_syms M' f); rewrite Hf; trivial.
+ intros []; simpl; intros v.
apply (fom_rels M' p); rewrite Hp; trivial.
Defined.
Let convert_t_complete t φ : fo_term_sem M φ t = fo_term_sem M' φ (convert_t t).
Proof.
induction t as [ i | [] v IH ]; simpl; auto.
f_equal; generalize Hf; intros ->.
unfold eq_rect_r; simpl; f_equal.
apply vec_pos_ext; intros j; rewrite !vec_pos_map.
rewrite IH; repeat f_equal.
Qed.
Let convert_complete A φ : fol_sem M φ A <-> fol_sem M' φ (convert A).
Proof.
revert φ.
induction A as [ | [] v | b A HA B HB | q A HA ]; intros φ.
+ simpl; tauto.
+ simpl.
apply fol_equiv_ext; f_equal; generalize Hp; intros ->.
unfold eq_rect_r; simpl; f_equal.
apply vec_pos_ext; intros j; rewrite !vec_pos_map; auto.
+ simpl; apply fol_bin_sem_ext; auto.
+ simpl; apply fol_quant_sem_ext; intro; auto.
Qed.
Hypothesis (Xfin : finite_t X)
(M'dec : fo_model_dec M')
(phi : nat -> X)
(A : fol_form Σ)
(HA : fol_sem M' phi (convert A)).
Local Fact convert_completeness : fo_form_fin_dec_SAT A.
Proof.
exists X, M, Xfin.
exists.
{ intros [] v; apply M'dec. }
exists phi; apply convert_complete; auto.
Qed.
End completeness.
Theorem Σn1_Σ_correct A :
fo_form_fin_dec_SAT A
<-> fo_form_fin_dec_SAT (Σn1_Σ A).
Proof.
split.
+ intros (X & M & H1 & H2 & phi & H3).
apply convert_soundness with X M phi; auto.
+ intros (X & M & H1 & H2 & phi & H3).
apply convert_completeness with X M phi; auto.
Qed.
End Sig_n1_Sig.