Require Import List.
From Undecidability.Synthetic
Require Import Definitions
ReducibilityFacts
InformativeDefinitions
InformativeReducibilityFacts.
From Undecidability.PCP Require Import PCP.
From Undecidability.Shared.Libs.DLW.Utils
Require Import utils_tac utils_list finite.
From Undecidability.Shared.Libs.DLW.Vec
Require Import pos vec.
From Undecidability.TRAKHTENBROT
Require Import notations bpcp
fo_sig fo_terms fo_logic fo_sat
Sig_discrete
Sig_noeq
.
Set Default Proof Using "Type".
Set Implicit Arguments.
Theorem BPCP_BPCP_problem_eq R : BPCP_problem R <-> BPCP R.
Proof.
split; intros (u & Hu).
+ constructor 1 with u; auto.
+ exists u; auto.
Qed.
Theorem BPCP_BPCP_problem : BPCP ⪯ᵢ BPCP_problem.
Proof.
exists (fun x => x); red; symmetry; apply BPCP_BPCP_problem_eq.
Qed.
Theorem fo_form_fin_dec_SAT_discr_equiv Σ A : FSAT Σ A <-> FSAT' Σ A.
Proof.
split.
+ apply fo_form_fin_dec_SAT_fin_discr_dec.
+ apply fo_form_fin_discr_dec_SAT_fin_dec.
Qed.
Corollary FIN_DEC_SAT_FIN_DISCR_DEC_SAT Σ : FSAT Σ ⪯ᵢ FSAT' Σ.
Proof. exists (fun A => A); red; apply fo_form_fin_dec_SAT_discr_equiv. Qed.
Section FIN_DEC_EQ_SAT_FIN_DEC_SAT.
Variable (Σ : fo_signature) (e : rels Σ) (He : ar_rels _ e = 2).
Theorem FIN_DEC_EQ_SAT_FIN_DEC_SAT : FSATEQ e He ⪯ᵢ FSAT Σ.
Proof.
exists (fun A => Σ_noeq (fol_syms A) (e::fol_rels A) _ He A).
intros A; split.
+ intros (X & HX); exists X; revert HX.
apply Σ_noeq_sound.
+ apply Σ_noeq_complete; cbv; auto.
Qed.
End FIN_DEC_EQ_SAT_FIN_DEC_SAT.