Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (793 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (10 entries) |
Variable Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (26 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (15 entries) |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (443 entries) |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (8 entries) |
Axiom Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (6 entries) |
Projection Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (48 entries) |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (6 entries) |
Section Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (22 entries) |
Instance Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (30 entries) |
Abbreviation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (7 entries) |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (157 entries) |
Record Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (15 entries) |
Global Index
A
AC [definition, in Categoricity]AC [section, in Categoricity]
ACZ [instance, in Quotient_TD]
Acz [inductive, in Aczel]
Aczel [library]
AczSS [definition, in Aczel]
AczZS [definition, in Aczel]
Acz_ZF [instance, in Quotient_TD]
Acz_Inf [lemma, in Aczel]
Acz_ZF' [instance, in Aczel]
Acz_ZS [lemma, in Aczel]
ACZ' [instance, in Aczel]
AC_ZFn [lemma, in Categoricity]
AC.M [variable, in Categoricity]
AC.MZF [variable, in Categoricity]
adj [definition, in Infinity]
adj_sub [lemma, in Infinity]
adj_union [lemma, in Infinity]
adj_power [lemma, in Infinity]
adj_sep [lemma, in Infinity]
adj_el [lemma, in Infinity]
AEmpty [definition, in Aczel]
AEmptyAx [lemma, in Aczel]
Aeq [definition, in Aczel]
Aeq_equiv [lemma, in Aczel]
Aeq_ASubq [lemma, in Aczel]
Aeq_ext [lemma, in Aczel]
aeq_equiv [instance, in Aczel]
Aeq_tra [lemma, in Aczel]
Aeq_sym [lemma, in Aczel]
Aeq_ref' [lemma, in Aczel]
Aeq_ref [lemma, in Aczel]
Aeq_NS_eq [lemma, in Quotient_CR]
Aeq_p1_eq [lemma, in Quotient_CR]
Aeq_p1_NS_eq [lemma, in Quotient_CR]
Aeq_p1_NS [lemma, in Quotient_CR]
Aeq_eqclass [lemma, in Quotient_CE]
agree [definition, in Prelims]
agree_unique [lemma, in Basics]
Ain [definition, in Aczel]
Ain_AWF [lemma, in Aczel]
Ain_proper [instance, in Aczel]
Ain_mor [lemma, in Aczel]
Ain_pi [lemma, in Aczel]
Ain_Asup [lemma, in Aczel]
Ain_IN_NS_p1 [lemma, in Quotient_CR]
Ain_IN_p1_NS [lemma, in Quotient_CR]
Ain_IN_NS [lemma, in Quotient_CR]
Ain_IN_p1 [lemma, in Quotient_CR]
antifounded [lemma, in Permutation]
Aom [definition, in Aczel]
Aom_spec [lemma, in Aczel]
Apower [definition, in Aczel]
ApowerAx [lemma, in Aczel]
Apower_proper [instance, in Aczel]
Apower_mor [lemma, in Aczel]
Arepl [definition, in Aczel]
AreplAx [lemma, in Aczel]
Arepl_proper [lemma, in Aczel]
Arepl_proper' [lemma, in Aczel]
Arepl_mor [lemma, in Aczel]
Asep [definition, in Aczel]
AsepAx [lemma, in Aczel]
Asep_proper [lemma, in Aczel]
Asep_proper' [lemma, in Aczel]
Asep_mor [lemma, in Aczel]
ASubq [definition, in Aczel]
ASubq_proper [instance, in Aczel]
ASubq_Subq_p1 [lemma, in Quotient_CR]
Asup [constructor, in Aczel]
Asup_inj [lemma, in Aczel]
ATS [definition, in Quotient_TD]
ATS_strength [lemma, in Quotient_TD]
ATS_universe [lemma, in Quotient_TD]
ATS_sur [lemma, in Quotient_TD]
ATS_mor [lemma, in Quotient_TD]
Aunion [definition, in Aczel]
AunionAx [lemma, in Aczel]
Aunion_proper [instance, in Aczel]
Aunion_mor [lemma, in Aczel]
Aupair [definition, in Aczel]
AupairAx [lemma, in Aczel]
Aupair_proper [instance, in Aczel]
Aupair_mor [lemma, in Aczel]
AWF_Aeq [lemma, in Aczel]
AxWF [projection, in Prelims]
ax_rep' [lemma, in Truncation]
B
Basic [section, in Basics]Basics [library]
binunion [abbreviation, in Prelims]
binunion_adj [lemma, in Infinity]
binunion_eset [lemma, in Infinity]
binunion_el [lemma, in Infinity]
bounded_small [lemma, in Basics]
bsur [definition, in Zermelo]
bsur_rep [lemma, in Zermelo]
btot [definition, in Zermelo]
btot_rep [lemma, in Zermelo]
btot_power [lemma, in Zermelo]
btot_union [lemma, in Zermelo]
btot_eset [lemma, in Zermelo]
btot_bsur [lemma, in Zermelo]
C
Cantor [lemma, in Basics]Categoricity [section, in Categoricity]
Categoricity [library]
Categoricity.F [variable, in Categoricity]
Categoricity.FG [variable, in Categoricity]
Categoricity.G [variable, in Categoricity]
Categoricity.GF [variable, in Categoricity]
cat_ZFn [lemma, in Categoricity]
cat_card [lemma, in Categoricity]
CE [axiom, in Quotient_CE]
cequiv [definition, in Prelims]
cequiv_equiv [instance, in Prelims]
chain [definition, in Infinity]
chain_sub [lemma, in Infinity]
choice_AC [lemma, in Categoricity]
choice_ZFn [lemma, in Categoricity]
choice_el [lemma, in Categoricity]
choice_type [definition, in Categoricity]
cl [abbreviation, in Prelims]
class [definition, in Quotient_CE]
classof [definition, in Quotient_CE]
classof_powit [lemma, in Quotient_CE]
classof_sub [lemma, in Quotient_CE]
classof_ele [lemma, in Quotient_CE]
classof_eq [lemma, in Quotient_CE]
classof_class [lemma, in Quotient_CE]
classof_ex [lemma, in Quotient_CE]
class_not_sub [lemma, in Stage]
class_eq [lemma, in Quotient_CE]
closed_rep [definition, in Basics]
closed_ZF [record, in Prelims]
closed_Z [record, in Prelims]
closed_frep [definition, in Prelims]
closed_sep [definition, in Prelims]
closed_power [definition, in Prelims]
closed_union [definition, in Prelims]
closed_upair [definition, in Prelims]
closed_stage [definition, in Stage]
Cons [section, in Zermelo]
const [definition, in Prelims]
const_ZF [lemma, in Prelims]
CR [section, in Quotient_CR]
cres [definition, in Prelims]
cress [lemma, in Truncation]
cres_eq [lemma, in Basics]
cres_cl [lemma, in Prelims]
cres_equiv [lemma, in Aczel]
CR1 [lemma, in Quotient_TD]
CR1 [projection, in Quotient_CR]
CR2 [lemma, in Quotient_TD]
CR2 [projection, in Quotient_CR]
cswelled [definition, in Prelims]
cswelled_sep [lemma, in Prelims]
ctrans [definition, in Prelims]
D
delta [projection, in Prelims]delta_eq [lemma, in Basics]
delta_spec [lemma, in Basics]
delta_equiv [lemma, in Embeddings]
delta_equal [lemma, in Truncation]
delta' [definition, in Basics]
delta'_fun [lemma, in Basics]
desc [definition, in Quotient_TD]
desc [definition, in Truncation]
descAx [lemma, in Quotient_TD]
descAx1 [lemma, in Quotient_TD]
descAx2 [lemma, in Quotient_TD]
descp [definition, in Truncation]
desc_p [lemma, in Truncation]
desc_nissing [lemma, in Truncation]
desc_issing [lemma, in Truncation]
Desc1 [projection, in Prelims]
Desc2 [projection, in Prelims]
Domain [section, in Zermelo]
domain [definition, in Zermelo]
domain_Stage_sub [lemma, in Zermelo]
domain_universe [lemma, in Zermelo]
domain_ZF [lemma, in Zermelo]
domain_sub [lemma, in Zermelo]
domain_el [lemma, in Zermelo]
domain_rep [lemma, in Zermelo]
domain_power [lemma, in Zermelo]
domain_union [lemma, in Zermelo]
dom_rep [definition, in Basics]
E
ele [definition, in Permutation]ele [definition, in Quotient_CE]
elem [projection, in Prelims]
elem_proper [instance, in Prelims]
elem_proper' [lemma, in Prelims]
ele_WF [lemma, in Quotient_CE]
em [definition, in Large]
Embed [section, in Large]
embed [definition, in Truncation]
Embeddings [library]
embed_delta [lemma, in Truncation]
embed_unique [lemma, in Truncation]
emclass [definition, in Truncation]
emc_issing [lemma, in Truncation]
emfun [definition, in Quotient_CR]
emfun_Aeq [lemma, in Quotient_CR]
empred [definition, in Quotient_CR]
empred [definition, in Quotient_CE]
empred_Aeq [lemma, in Quotient_CR]
empred_Aeq [lemma, in Quotient_CE]
empty [definition, in Permutation]
empty [definition, in Quotient_CE]
emptyAx [lemma, in Permutation]
emptyE [lemma, in Quotient_CR]
emptyE [lemma, in Quotient_CE]
em_sur [lemma, in Large]
em_mor [lemma, in Large]
em_equiv [lemma, in Large]
em_rec [lemma, in Large]
em_invar [lemma, in Large]
em' [definition, in Large]
eqcl [abbreviation, in Prelims]
eqclass [definition, in Quotient_CE]
equiv [definition, in Prelims]
equiv_em [lemma, in Large]
equiv_equiv [instance, in Prelims]
eq_equiv [lemma, in Prelims]
Eset [projection, in Prelims]
eset [projection, in Prelims]
eset_unique [lemma, in Basics]
eset_sub [lemma, in Basics]
eset_HF [lemma, in Infinity]
exmp [definition, in Truncation]
Ext [lemma, in Basics]
extAx [lemma, in Permutation]
ex_rank [lemma, in Stage]
F
F [definition, in Permutation]false [lemma, in Uncountable]
FG [lemma, in Permutation]
Fin [inductive, in Infinity]
FinA [constructor, in Infinity]
FinE [constructor, in Infinity]
finpow [definition, in Prelims]
Fin_chain_max [lemma, in Infinity]
Fin_binunion [lemma, in Infinity]
Fin_frep [lemma, in Infinity]
Fin_rep [lemma, in Infinity]
Fin_subset [lemma, in Infinity]
FM_ZFS [lemma, in Permutation]
FM_ZS [lemma, in Permutation]
Fneq [lemma, in Permutation]
Frep [projection, in Prelims]
frep [projection, in Prelims]
frepAx [lemma, in Permutation]
frepl [definition, in Permutation]
frep_el [lemma, in Basics]
frep' [definition, in Basics]
frep'_el [lemma, in Basics]
fres [definition, in Prelims]
fress [lemma, in Truncation]
fres_eq [lemma, in Basics]
fres_equiv [lemma, in Aczel]
functional [definition, in Prelims]
F0 [lemma, in Permutation]
F1 [lemma, in Permutation]
G
G [definition, in Permutation]gel [abbreviation, in Prelims]
GF [lemma, in Permutation]
Gneq [lemma, in Permutation]
G0 [lemma, in Permutation]
G1 [lemma, in Permutation]
H
help [lemma, in Uncountable]HF [inductive, in Infinity]
HFI [constructor, in Infinity]
HF_OM [lemma, in Infinity]
HF_rho [lemma, in Infinity]
HF_ZF [lemma, in Infinity]
HF_union [lemma, in Infinity]
HF_eset [lemma, in Infinity]
HF_ctrans [lemma, in Infinity]
HF_power [lemma, in Infinity]
HF_rep [lemma, in Infinity]
HF_Fin [lemma, in Infinity]
HiZ [projection, in Prelims]
HiZF [projection, in Prelims]
HiZF' [projection, in Prelims]
HZ [projection, in Prelims]
HZF [projection, in Prelims]
HZFS [projection, in Prelims]
HZF' [projection, in Prelims]
h_strength [lemma, in Embeddings]
h_const [lemma, in Embeddings]
h_universe [lemma, in Embeddings]
h_frep2 [lemma, in Embeddings]
h_frep1 [lemma, in Embeddings]
h_power [lemma, in Embeddings]
h_union [lemma, in Embeddings]
h_upair [lemma, in Embeddings]
h_eset [lemma, in Embeddings]
h_swelled2 [lemma, in Embeddings]
h_swelled1 [lemma, in Embeddings]
h_trans2 [lemma, in Embeddings]
h_trans1 [lemma, in Embeddings]
h_sur_sub [lemma, in Embeddings]
h_cres [lemma, in Embeddings]
h_Proper [instance, in Embeddings]
h_equiv [lemma, in Embeddings]
h_sub [lemma, in Embeddings]
I
i [definition, in Zermelo]II [constructor, in Zermelo]
ij [lemma, in Zermelo]
IM [definition, in Truncation]
img [definition, in Embeddings]
img_ZF [lemma, in Embeddings]
img_frep2 [lemma, in Embeddings]
img_frep1 [lemma, in Embeddings]
img_Z2 [lemma, in Embeddings]
img_Z1 [lemma, in Embeddings]
img_cswelled2 [lemma, in Embeddings]
img_cswelled1 [lemma, in Embeddings]
img_ctrans2 [lemma, in Embeddings]
img_ctrans1 [lemma, in Embeddings]
img_cres [lemma, in Embeddings]
img_P [lemma, in Embeddings]
img_Proper [instance, in Embeddings]
img_agree [lemma, in Embeddings]
IMISO [section, in Truncation]
IMISO.p [variable, in Truncation]
IMISO.PC [variable, in Truncation]
IM_strength [lemma, in Truncation]
IM_universe [lemma, in Truncation]
IM_ZF [lemma, in Truncation]
IN [definition, in Quotient_CR]
Inf [definition, in Prelims]
Inf [section, in Infinity]
Infinity [lemma, in Uncountable]
Infinity [lemma, in Infinity]
Infinity [section, in Infinity]
Infinity [library]
Infinity' [lemma, in Uncountable]
Infinity' [lemma, in Infinity]
Infinity.MI [variable, in Infinity]
inhab [abbreviation, in Prelims]
inhab_neq [lemma, in Basics]
inhab_not [lemma, in Basics]
injective [definition, in Prelims]
Instance [section, in Permutation]
1 [notation, in Permutation]
IN_WF [lemma, in Quotient_CR]
IN_Ain_NS_p1 [lemma, in Quotient_CR]
IN_Ain_p1_NS [lemma, in Quotient_CR]
IN_Ain_NS [lemma, in Quotient_CR]
IN_Ain_p1 [lemma, in Quotient_CR]
iseqcl [definition, in Prelims]
Iso [section, in Zermelo]
iso [definition, in Zermelo]
Iso [inductive, in Zermelo]
Iso_tricho [lemma, in Zermelo]
Iso_max [lemma, in Zermelo]
Iso_Stage_max [lemma, in Zermelo]
Iso_strength [lemma, in Zermelo]
Iso_universe [lemma, in Zermelo]
Iso_closed_rep [lemma, in Zermelo]
Iso_closed_power [lemma, in Zermelo]
Iso_closed_union [lemma, in Zermelo]
Iso_trans [lemma, in Zermelo]
Iso_Stage [lemma, in Zermelo]
Iso_dom' [lemma, in Zermelo]
Iso_dom [lemma, in Zermelo]
Iso_rep [lemma, in Zermelo]
Iso_power [lemma, in Zermelo]
Iso_union [lemma, in Zermelo]
Iso_eset [lemma, in Zermelo]
Iso_mem [lemma, in Zermelo]
Iso_inj [lemma, in Zermelo]
Iso_res [lemma, in Zermelo]
Iso_fun [lemma, in Zermelo]
Iso_bsur [lemma, in Zermelo]
Iso_btot [lemma, in Zermelo]
Iso_sym [lemma, in Zermelo]
Iso_parti [lemma, in Categoricity]
issing [definition, in Truncation]
issing_ext [lemma, in Truncation]
iZ [record, in Prelims]
iZF [record, in Prelims]
iZF' [record, in Prelims]
iZS [record, in Prelims]
i_ran [lemma, in Zermelo]
i_Iso [lemma, in Zermelo]
J
j [definition, in Zermelo]ji [lemma, in Zermelo]
j_dom [lemma, in Zermelo]
j_Iso [lemma, in Zermelo]
L
Large [library]least [definition, in Prelims]
least_unique [lemma, in Basics]
limit [definition, in Stage]
limit_Z [lemma, in Stage]
limit_sep [lemma, in Stage]
limit_upair [lemma, in Stage]
limit_power [lemma, in Stage]
limit_union [lemma, in Stage]
limit_closed_stage [lemma, in Stage]
limit_infinite [lemma, in Infinity]
limit_OM [lemma, in Infinity]
M
M [definition, in Uncountable]Main [section, in Zermelo]
MI [lemma, in Infinity]
Mor [section, in Embeddings]
Morph [projection, in Prelims]
Mor.h [variable, in Embeddings]
Mor.h_sur [variable, in Embeddings]
Mor.h_mor [variable, in Embeddings]
MP [definition, in Truncation]
MPZF [instance, in Truncation]
MTN [definition, in Embeddings]
MTN_fres [definition, in Embeddings]
MtoN [definition, in Zermelo]
MtoN_fun [lemma, in Zermelo]
MZF [instance, in Infinity]
M_ZF [definition, in Permutation]
M_ZF' [definition, in Permutation]
M_ZS [definition, in Permutation]
M_SS [definition, in Permutation]
N
N [definition, in Quotient_TD]N [definition, in Uncountable]
N [projection, in Quotient_CR]
nat_bool [lemma, in Aczel]
Norm [instance, in Quotient_TD]
Normalizer [record, in Quotient_CR]
not_total_domain [lemma, in Zermelo]
not_total_exists [lemma, in Zermelo]
NS [definition, in Quotient_CR]
NS_powit [lemma, in Quotient_CR]
NS_p1_eq [lemma, in Quotient_CR]
NS_eq_Aeq_p1 [lemma, in Quotient_CR]
NTM [definition, in Embeddings]
NTM_fres [lemma, in Embeddings]
Num [definition, in Uncountable]
N_proper [instance, in Quotient_CR]
N_eq_Aeq [lemma, in Quotient_CR]
N_idem [lemma, in Quotient_CR]
O
om [definition, in Uncountable]OM [definition, in Infinity]
om [definition, in Infinity]
OM_least [lemma, in Infinity]
OM_least_limit [lemma, in Infinity]
om_infinite [lemma, in Infinity]
om_limit [lemma, in Infinity]
OM_ZF1 [lemma, in Infinity]
OM_universe [lemma, in Infinity]
OM_repclosed [lemma, in Infinity]
OM_rho_el [lemma, in Infinity]
OM_Fin [lemma, in Infinity]
OM_limit [lemma, in Infinity]
OM_stage [lemma, in Infinity]
OM_eset [lemma, in Infinity]
OM_ex_powit [lemma, in Infinity]
OM_powit [lemma, in Infinity]
P
P [definition, in Truncation]Pair [projection, in Prelims]
pair [definition, in Permutation]
pairAx [lemma, in Permutation]
pair_el [lemma, in Basics]
parti [definition, in Categoricity]
Perm [section, in Permutation]
Permutation [library]
Perm.F [variable, in Permutation]
Perm.FG [variable, in Permutation]
Perm.G [variable, in Permutation]
Perm.GF [variable, in Permutation]
PI [axiom, in Quotient_TD]
PI [projection, in Quotient_CR]
PI [axiom, in Quotient_CE]
pi [definition, in Truncation]
PI [lemma, in Truncation]
pi_Ain [lemma, in Aczel]
PI_eq [lemma, in Quotient_CR]
pi_sur [lemma, in Truncation]
pi_mor [lemma, in Truncation]
pi1 [definition, in Aczel]
pi2 [definition, in Aczel]
pow [definition, in Permutation]
Power [projection, in Prelims]
power [projection, in Prelims]
power [definition, in Quotient_CE]
powerAx [lemma, in Permutation]
powerAx [lemma, in Quotient_CR]
powerAx [lemma, in Quotient_CE]
power_above [lemma, in Basics]
power_inj [lemma, in Basics]
power_mono [lemma, in Basics]
power_trans [lemma, in Basics]
power_eager [lemma, in Basics]
power_proper [instance, in Prelims]
power_proper' [lemma, in Prelims]
power_Fin [lemma, in Infinity]
power_welldef [lemma, in Quotient_CE]
power_eqclass [lemma, in Quotient_CE]
power' [definition, in Quotient_CE]
powit [definition, in Prelims]
powit_inj [lemma, in Uncountable]
powit_Fin [lemma, in Infinity]
powit_HF [lemma, in Infinity]
powit_stage [lemma, in Infinity]
pow_eset [lemma, in Infinity]
preim [definition, in Embeddings]
preim_equiv' [lemma, in Embeddings]
preim_equiv [lemma, in Embeddings]
Prelims [library]
Proper [section, in Prelims]
PS [definition, in Truncation]
PZ [definition, in Truncation]
PZF' [definition, in Truncation]
P_ZF' [lemma, in Truncation]
P_Z [lemma, in Truncation]
P_WF [lemma, in Truncation]
P_Ext [lemma, in Truncation]
P_proj [lemma, in Truncation]
P_eq [lemma, in Truncation]
Q
quine [lemma, in Permutation]Quotient_CE [library]
Quotient_CR [library]
Quotient_TD [library]
R
R [definition, in Permutation]range [definition, in Zermelo]
range_universe [lemma, in Zermelo]
range_domain_small [lemma, in Zermelo]
range_domain [lemma, in Zermelo]
rank [definition, in Stage]
rank_fun [lemma, in Stage]
reachable [definition, in Stage]
Rep [lemma, in Basics]
rep [definition, in Basics]
replAx [lemma, in Quotient_CR]
rep_delta [lemma, in Basics]
rep_frep [lemma, in Basics]
rep_sep [lemma, in Basics]
rep_upair [lemma, in Basics]
rep_adj [lemma, in Infinity]
rep_sing [lemma, in Infinity]
rep_eset [lemma, in Infinity]
rep' [definition, in Truncation]
rho [definition, in Stage]
rho_rank [lemma, in Stage]
rho_rho' [lemma, in Stage]
rho_rank_ex [lemma, in Stage]
rho' [definition, in Stage]
rho'_rank [lemma, in Stage]
R_unique [lemma, in Permutation]
R' [definition, in Permutation]
R'_unique [lemma, in Permutation]
S
Sempty [definition, in Quotient_CR]Sep [projection, in Prelims]
sep [projection, in Prelims]
sep [definition, in Quotient_CE]
sepa [definition, in Permutation]
sepAx [lemma, in Permutation]
sepAx [lemma, in Quotient_CR]
sepAx [lemma, in Quotient_CE]
sep_sub [lemma, in Basics]
sep_el [lemma, in Basics]
sep_cswelled [lemma, in Prelims]
sep_welldef [lemma, in Quotient_CE]
sep_eqclass [lemma, in Quotient_CE]
sep_false [lemma, in Truncation]
sep_true [lemma, in Truncation]
sep' [definition, in Basics]
sep' [definition, in Quotient_CE]
sep'_el [lemma, in Basics]
set [projection, in Prelims]
SET [instance, in Quotient_TD]
SET [instance, in Quotient_CE]
SETSS [definition, in Quotient_CR]
SETSS [definition, in Quotient_CE]
SetStruct [record, in Prelims]
SETZF_Inf [lemma, in Quotient_CR]
SETZF_ZF' [lemma, in Quotient_CR]
SETZF_Z [lemma, in Quotient_CR]
SETZF' [definition, in Quotient_CR]
SETZS [definition, in Quotient_CR]
SET_ZF [instance, in Quotient_TD]
set_not_sub [lemma, in Stage]
set_ext [lemma, in Quotient_CR]
SET_Inf [lemma, in Quotient_CE]
SET_Z [instance, in Quotient_CE]
set_ext [lemma, in Quotient_CE]
SET' [definition, in Quotient_CR]
SET' [definition, in Quotient_CE]
shrink [lemma, in Truncation]
sing [abbreviation, in Prelims]
sing_union [lemma, in Basics]
sing_el [lemma, in Basics]
sing_neq [lemma, in Aczel]
sing_Aeq [lemma, in Aczel]
sing_eqcl [lemma, in Truncation]
sing1 [definition, in Aczel]
sing2 [definition, in Aczel]
small [definition, in Prelims]
small_red [lemma, in Basics]
Spower [definition, in Quotient_CR]
Srepl [definition, in Quotient_CR]
Ssep [definition, in Quotient_CR]
ST [definition, in Large]
Stage [inductive, in Stage]
Stage [section, in Stage]
Stage [library]
Stages [section, in Zermelo]
StageS [constructor, in Stage]
StageU [constructor, in Stage]
Stage_Iso [lemma, in Zermelo]
Stage_btot [lemma, in Zermelo]
Stage_inhab [lemma, in Stage]
Stage_succ_limit [lemma, in Stage]
Stage_dicho [lemma, in Stage]
Stage_least [lemma, in Stage]
Stage_tricho [lemma, in Stage]
Stage_lin_el [lemma, in Stage]
Stage_lin [lemma, in Stage]
Stage_lin_succ [lemma, in Stage]
Stage_double_ind [lemma, in Stage]
Stage_inc [lemma, in Stage]
Stage_sep [lemma, in Stage]
Stage_upair [lemma, in Stage]
Stage_power [lemma, in Stage]
Stage_union [lemma, in Stage]
Stage_swelled [lemma, in Stage]
Stage_trans [lemma, in Stage]
Stage_eset [lemma, in Stage]
step [lemma, in Large]
strength [definition, in Prelims]
strength_weak [lemma, in Basics]
strength_proper [instance, in Prelims]
strength_proper' [lemma, in Prelims]
sub [definition, in Prelims]
sub [definition, in Permutation]
sub [definition, in Quotient_CE]
Sub [section, in Truncation]
Subq [definition, in Quotient_CR]
subset_outside [lemma, in Basics]
sub_eset [lemma, in Basics]
sub_trans [lemma, in Basics]
sub_refl [lemma, in Basics]
sub_proper [instance, in Prelims]
Sub.p [variable, in Truncation]
Sub.PC [variable, in Truncation]
Sub.PWF [variable, in Truncation]
Sub.set [variable, in Truncation]
Sub.set_ZF [variable, in Truncation]
succ [definition, in Stage]
Sunion [definition, in Quotient_CR]
Supair [definition, in Quotient_CR]
surjective [definition, in Prelims]
swelled [definition, in Prelims]
swelled_sep [lemma, in Prelims]
T
tdelta [axiom, in Quotient_TD]TDesc1 [axiom, in Quotient_TD]
TDesc2 [axiom, in Quotient_TD]
toP [definition, in Truncation]
total [definition, in Prelims]
tot_sur [lemma, in Zermelo]
trace [definition, in Categoricity]
trans [definition, in Prelims]
trans_strength [lemma, in Basics]
trans_power [lemma, in Basics]
trans_strength [lemma, in Large]
Truncation [library]
U
U [definition, in Large]Uncountable [section, in Uncountable]
Uncountable [library]
Uncountable.f [variable, in Uncountable]
Uncountable.f_sur [variable, in Uncountable]
Uncountable.set [variable, in Uncountable]
Uncountable.SI [variable, in Uncountable]
Uncountable.SZF [variable, in Uncountable]
uni [definition, in Permutation]
Union [projection, in Prelims]
union [projection, in Prelims]
union [definition, in Quotient_CE]
unionAx [lemma, in Permutation]
unionAx [lemma, in Quotient_CR]
unionAx [lemma, in Quotient_CE]
union_power_eq [lemma, in Basics]
union_sub_el_sub [lemma, in Basics]
union_trans [lemma, in Basics]
union_eset [lemma, in Basics]
union_gel_eq [lemma, in Basics]
union_gel [lemma, in Basics]
union_lub [lemma, in Basics]
union_mono [lemma, in Basics]
union_trans_sub [lemma, in Basics]
union_sub [lemma, in Basics]
union_el_sub [lemma, in Basics]
union_proper [instance, in Prelims]
union_proper' [lemma, in Prelims]
union_domain [lemma, in Zermelo]
union_welldef [lemma, in Quotient_CE]
union_eqclass [lemma, in Quotient_CE]
union' [definition, in Quotient_CE]
unique [definition, in Prelims]
universe [definition, in Prelims]
Universes [section, in Zermelo]
universe_proper [instance, in Prelims]
universe_least [lemma, in Stage]
universe_limit [lemma, in Stage]
universe_limit_frep [lemma, in Stage]
universe_limit' [lemma, in Stage]
universe_stage [lemma, in Stage]
universe_rank [lemma, in Stage]
universe_swelled [lemma, in Stage]
universe_trans [lemma, in Stage]
uni_strength [lemma, in Basics]
uni_strength [lemma, in Large]
upair [projection, in Prelims]
upair [definition, in Quotient_CE]
upairAx [lemma, in Quotient_CR]
upairAx [lemma, in Quotient_CE]
upair_fun [lemma, in Basics]
upair_proper [instance, in Prelims]
upair_proper' [lemma, in Prelims]
upair_welldef [lemma, in Quotient_CE]
upair_eqclass [lemma, in Quotient_CE]
upair' [definition, in Basics]
upair' [definition, in Quotient_CE]
upair'_el [lemma, in Basics]
upbnd [abbreviation, in Prelims]
U_strength [lemma, in Large]
U_universe [lemma, in Large]
U_frep [projection, in Prelims]
U_Z [projection, in Prelims]
U_sep [projection, in Prelims]
U_power [projection, in Prelims]
U_union [projection, in Prelims]
U_upair [projection, in Prelims]
U_eset [projection, in Prelims]
U_trans [projection, in Prelims]
W
WF [inductive, in Prelims]WF [section, in Permutation]
WFI [constructor, in Prelims]
WF_no_loop3 [lemma, in Basics]
WF_no_loop2 [lemma, in Basics]
WF_no_loop [lemma, in Basics]
WF_sub [lemma, in Basics]
WF_model [lemma, in Permutation]
WF_ZF [lemma, in Permutation]
WF_Z [lemma, in Permutation]
WF_frep [lemma, in Permutation]
WF_sep [lemma, in Permutation]
WF_power [lemma, in Permutation]
WF_union [lemma, in Permutation]
WF_upair [lemma, in Permutation]
WF_eset [lemma, in Permutation]
WF_swelled [lemma, in Permutation]
WF_trans [lemma, in Permutation]
WF_reachable [lemma, in Stage]
X
xm_upbnd [lemma, in Stage]Z
Z [record, in Prelims]Zermelo [library]
ZExt [projection, in Prelims]
ZF [record, in Prelims]
ZFExt [projection, in Prelims]
ZFExt' [projection, in Prelims]
ZFge [definition, in Prelims]
ZFge_cons [lemma, in Large]
ZFge0 [lemma, in Large]
ZFn [definition, in Prelims]
ZFn_ZFw [lemma, in Large]
ZFn_cons_not_provable [lemma, in Large]
ZFS [record, in Prelims]
ZFSDesc [lemma, in Truncation]
ZFSDesc1 [projection, in Prelims]
ZFSDesc2 [projection, in Prelims]
ZFset [projection, in Prelims]
ZFset' [projection, in Prelims]
ZFSExt [projection, in Prelims]
ZFSFrep [projection, in Prelims]
ZFStruct [record, in Prelims]
ZFStruct' [record, in Prelims]
ZFS_model [lemma, in Permutation]
ZFw [definition, in Prelims]
ZF_rep [lemma, in Basics]
ZF_rep' [lemma, in Basics]
ZF_proper [instance, in Prelims]
ZF_proper' [lemma, in Prelims]
ZF_ZFS [lemma, in Truncation]
ZF' [record, in Prelims]
Zset [projection, in Prelims]
ZStruct [record, in Prelims]
Z_rep [lemma, in Basics]
other
_ <=s _ [notation, in Prelims]_ <=c _ [notation, in Prelims]
_ <=p _ [notation, in Prelims]
_ == _ [notation, in Prelims]
_ << _ [notation, in Prelims]
_ <<= _ [notation, in Prelims]
_ nel _ [notation, in Prelims]
_ el _ [notation, in Prelims]
0 [notation, in Prelims]
Notation Index
I
1 [in Permutation]other
_ <=s _ [in Prelims]_ <=c _ [in Prelims]
_ <=p _ [in Prelims]
_ == _ [in Prelims]
_ << _ [in Prelims]
_ <<= _ [in Prelims]
_ nel _ [in Prelims]
_ el _ [in Prelims]
0 [in Prelims]
Variable Index
A
AC.M [in Categoricity]AC.MZF [in Categoricity]
C
Categoricity.F [in Categoricity]Categoricity.FG [in Categoricity]
Categoricity.G [in Categoricity]
Categoricity.GF [in Categoricity]
I
IMISO.p [in Truncation]IMISO.PC [in Truncation]
Infinity.MI [in Infinity]
M
Mor.h [in Embeddings]Mor.h_sur [in Embeddings]
Mor.h_mor [in Embeddings]
P
Perm.F [in Permutation]Perm.FG [in Permutation]
Perm.G [in Permutation]
Perm.GF [in Permutation]
S
Sub.p [in Truncation]Sub.PC [in Truncation]
Sub.PWF [in Truncation]
Sub.set [in Truncation]
Sub.set_ZF [in Truncation]
U
Uncountable.f [in Uncountable]Uncountable.f_sur [in Uncountable]
Uncountable.set [in Uncountable]
Uncountable.SI [in Uncountable]
Uncountable.SZF [in Uncountable]
Library Index
A
AczelB
BasicsC
CategoricityE
EmbeddingsI
InfinityL
LargeP
PermutationPrelims
Q
Quotient_CEQuotient_CR
Quotient_TD
S
StageT
TruncationU
UncountableZ
ZermeloLemma Index
A
Acz_Inf [in Aczel]Acz_ZS [in Aczel]
AC_ZFn [in Categoricity]
adj_sub [in Infinity]
adj_union [in Infinity]
adj_power [in Infinity]
adj_sep [in Infinity]
adj_el [in Infinity]
AEmptyAx [in Aczel]
Aeq_equiv [in Aczel]
Aeq_ASubq [in Aczel]
Aeq_ext [in Aczel]
Aeq_tra [in Aczel]
Aeq_sym [in Aczel]
Aeq_ref' [in Aczel]
Aeq_ref [in Aczel]
Aeq_NS_eq [in Quotient_CR]
Aeq_p1_eq [in Quotient_CR]
Aeq_p1_NS_eq [in Quotient_CR]
Aeq_p1_NS [in Quotient_CR]
Aeq_eqclass [in Quotient_CE]
agree_unique [in Basics]
Ain_AWF [in Aczel]
Ain_mor [in Aczel]
Ain_pi [in Aczel]
Ain_Asup [in Aczel]
Ain_IN_NS_p1 [in Quotient_CR]
Ain_IN_p1_NS [in Quotient_CR]
Ain_IN_NS [in Quotient_CR]
Ain_IN_p1 [in Quotient_CR]
antifounded [in Permutation]
Aom_spec [in Aczel]
ApowerAx [in Aczel]
Apower_mor [in Aczel]
AreplAx [in Aczel]
Arepl_proper [in Aczel]
Arepl_proper' [in Aczel]
Arepl_mor [in Aczel]
AsepAx [in Aczel]
Asep_proper [in Aczel]
Asep_proper' [in Aczel]
Asep_mor [in Aczel]
ASubq_Subq_p1 [in Quotient_CR]
Asup_inj [in Aczel]
ATS_strength [in Quotient_TD]
ATS_universe [in Quotient_TD]
ATS_sur [in Quotient_TD]
ATS_mor [in Quotient_TD]
AunionAx [in Aczel]
Aunion_mor [in Aczel]
AupairAx [in Aczel]
Aupair_mor [in Aczel]
AWF_Aeq [in Aczel]
ax_rep' [in Truncation]
B
binunion_adj [in Infinity]binunion_eset [in Infinity]
binunion_el [in Infinity]
bounded_small [in Basics]
bsur_rep [in Zermelo]
btot_rep [in Zermelo]
btot_power [in Zermelo]
btot_union [in Zermelo]
btot_eset [in Zermelo]
btot_bsur [in Zermelo]
C
Cantor [in Basics]cat_ZFn [in Categoricity]
cat_card [in Categoricity]
chain_sub [in Infinity]
choice_AC [in Categoricity]
choice_ZFn [in Categoricity]
choice_el [in Categoricity]
classof_powit [in Quotient_CE]
classof_sub [in Quotient_CE]
classof_ele [in Quotient_CE]
classof_eq [in Quotient_CE]
classof_class [in Quotient_CE]
classof_ex [in Quotient_CE]
class_not_sub [in Stage]
class_eq [in Quotient_CE]
const_ZF [in Prelims]
cress [in Truncation]
cres_eq [in Basics]
cres_cl [in Prelims]
cres_equiv [in Aczel]
CR1 [in Quotient_TD]
CR2 [in Quotient_TD]
cswelled_sep [in Prelims]
D
delta_eq [in Basics]delta_spec [in Basics]
delta_equiv [in Embeddings]
delta_equal [in Truncation]
delta'_fun [in Basics]
descAx [in Quotient_TD]
descAx1 [in Quotient_TD]
descAx2 [in Quotient_TD]
desc_p [in Truncation]
desc_nissing [in Truncation]
desc_issing [in Truncation]
domain_Stage_sub [in Zermelo]
domain_universe [in Zermelo]
domain_ZF [in Zermelo]
domain_sub [in Zermelo]
domain_el [in Zermelo]
domain_rep [in Zermelo]
domain_power [in Zermelo]
domain_union [in Zermelo]
E
elem_proper' [in Prelims]ele_WF [in Quotient_CE]
embed_delta [in Truncation]
embed_unique [in Truncation]
emc_issing [in Truncation]
emfun_Aeq [in Quotient_CR]
empred_Aeq [in Quotient_CR]
empred_Aeq [in Quotient_CE]
emptyAx [in Permutation]
emptyE [in Quotient_CR]
emptyE [in Quotient_CE]
em_sur [in Large]
em_mor [in Large]
em_equiv [in Large]
em_rec [in Large]
em_invar [in Large]
equiv_em [in Large]
eq_equiv [in Prelims]
eset_unique [in Basics]
eset_sub [in Basics]
eset_HF [in Infinity]
Ext [in Basics]
extAx [in Permutation]
ex_rank [in Stage]
F
false [in Uncountable]FG [in Permutation]
Fin_chain_max [in Infinity]
Fin_binunion [in Infinity]
Fin_frep [in Infinity]
Fin_rep [in Infinity]
Fin_subset [in Infinity]
FM_ZFS [in Permutation]
FM_ZS [in Permutation]
Fneq [in Permutation]
frepAx [in Permutation]
frep_el [in Basics]
frep'_el [in Basics]
fress [in Truncation]
fres_eq [in Basics]
fres_equiv [in Aczel]
F0 [in Permutation]
F1 [in Permutation]
G
GF [in Permutation]Gneq [in Permutation]
G0 [in Permutation]
G1 [in Permutation]
H
help [in Uncountable]HF_OM [in Infinity]
HF_rho [in Infinity]
HF_ZF [in Infinity]
HF_union [in Infinity]
HF_eset [in Infinity]
HF_ctrans [in Infinity]
HF_power [in Infinity]
HF_rep [in Infinity]
HF_Fin [in Infinity]
h_strength [in Embeddings]
h_const [in Embeddings]
h_universe [in Embeddings]
h_frep2 [in Embeddings]
h_frep1 [in Embeddings]
h_power [in Embeddings]
h_union [in Embeddings]
h_upair [in Embeddings]
h_eset [in Embeddings]
h_swelled2 [in Embeddings]
h_swelled1 [in Embeddings]
h_trans2 [in Embeddings]
h_trans1 [in Embeddings]
h_sur_sub [in Embeddings]
h_cres [in Embeddings]
h_equiv [in Embeddings]
h_sub [in Embeddings]
I
ij [in Zermelo]img_ZF [in Embeddings]
img_frep2 [in Embeddings]
img_frep1 [in Embeddings]
img_Z2 [in Embeddings]
img_Z1 [in Embeddings]
img_cswelled2 [in Embeddings]
img_cswelled1 [in Embeddings]
img_ctrans2 [in Embeddings]
img_ctrans1 [in Embeddings]
img_cres [in Embeddings]
img_P [in Embeddings]
img_agree [in Embeddings]
IM_strength [in Truncation]
IM_universe [in Truncation]
IM_ZF [in Truncation]
Infinity [in Uncountable]
Infinity [in Infinity]
Infinity' [in Uncountable]
Infinity' [in Infinity]
inhab_neq [in Basics]
inhab_not [in Basics]
IN_WF [in Quotient_CR]
IN_Ain_NS_p1 [in Quotient_CR]
IN_Ain_p1_NS [in Quotient_CR]
IN_Ain_NS [in Quotient_CR]
IN_Ain_p1 [in Quotient_CR]
Iso_tricho [in Zermelo]
Iso_max [in Zermelo]
Iso_Stage_max [in Zermelo]
Iso_strength [in Zermelo]
Iso_universe [in Zermelo]
Iso_closed_rep [in Zermelo]
Iso_closed_power [in Zermelo]
Iso_closed_union [in Zermelo]
Iso_trans [in Zermelo]
Iso_Stage [in Zermelo]
Iso_dom' [in Zermelo]
Iso_dom [in Zermelo]
Iso_rep [in Zermelo]
Iso_power [in Zermelo]
Iso_union [in Zermelo]
Iso_eset [in Zermelo]
Iso_mem [in Zermelo]
Iso_inj [in Zermelo]
Iso_res [in Zermelo]
Iso_fun [in Zermelo]
Iso_bsur [in Zermelo]
Iso_btot [in Zermelo]
Iso_sym [in Zermelo]
Iso_parti [in Categoricity]
issing_ext [in Truncation]
i_ran [in Zermelo]
i_Iso [in Zermelo]
J
ji [in Zermelo]j_dom [in Zermelo]
j_Iso [in Zermelo]
L
least_unique [in Basics]limit_Z [in Stage]
limit_sep [in Stage]
limit_upair [in Stage]
limit_power [in Stage]
limit_union [in Stage]
limit_closed_stage [in Stage]
limit_infinite [in Infinity]
limit_OM [in Infinity]
M
MI [in Infinity]MtoN_fun [in Zermelo]
N
nat_bool [in Aczel]not_total_domain [in Zermelo]
not_total_exists [in Zermelo]
NS_powit [in Quotient_CR]
NS_p1_eq [in Quotient_CR]
NS_eq_Aeq_p1 [in Quotient_CR]
NTM_fres [in Embeddings]
N_eq_Aeq [in Quotient_CR]
N_idem [in Quotient_CR]
O
OM_least [in Infinity]OM_least_limit [in Infinity]
om_infinite [in Infinity]
om_limit [in Infinity]
OM_ZF1 [in Infinity]
OM_universe [in Infinity]
OM_repclosed [in Infinity]
OM_rho_el [in Infinity]
OM_Fin [in Infinity]
OM_limit [in Infinity]
OM_stage [in Infinity]
OM_eset [in Infinity]
OM_ex_powit [in Infinity]
OM_powit [in Infinity]
P
pairAx [in Permutation]pair_el [in Basics]
PI [in Truncation]
pi_Ain [in Aczel]
PI_eq [in Quotient_CR]
pi_sur [in Truncation]
pi_mor [in Truncation]
powerAx [in Permutation]
powerAx [in Quotient_CR]
powerAx [in Quotient_CE]
power_above [in Basics]
power_inj [in Basics]
power_mono [in Basics]
power_trans [in Basics]
power_eager [in Basics]
power_proper' [in Prelims]
power_Fin [in Infinity]
power_welldef [in Quotient_CE]
power_eqclass [in Quotient_CE]
powit_inj [in Uncountable]
powit_Fin [in Infinity]
powit_HF [in Infinity]
powit_stage [in Infinity]
pow_eset [in Infinity]
preim_equiv' [in Embeddings]
preim_equiv [in Embeddings]
P_ZF' [in Truncation]
P_Z [in Truncation]
P_WF [in Truncation]
P_Ext [in Truncation]
P_proj [in Truncation]
P_eq [in Truncation]
Q
quine [in Permutation]R
range_universe [in Zermelo]range_domain_small [in Zermelo]
range_domain [in Zermelo]
rank_fun [in Stage]
Rep [in Basics]
replAx [in Quotient_CR]
rep_delta [in Basics]
rep_frep [in Basics]
rep_sep [in Basics]
rep_upair [in Basics]
rep_adj [in Infinity]
rep_sing [in Infinity]
rep_eset [in Infinity]
rho_rank [in Stage]
rho_rho' [in Stage]
rho_rank_ex [in Stage]
rho'_rank [in Stage]
R_unique [in Permutation]
R'_unique [in Permutation]
S
sepAx [in Permutation]sepAx [in Quotient_CR]
sepAx [in Quotient_CE]
sep_sub [in Basics]
sep_el [in Basics]
sep_cswelled [in Prelims]
sep_welldef [in Quotient_CE]
sep_eqclass [in Quotient_CE]
sep_false [in Truncation]
sep_true [in Truncation]
sep'_el [in Basics]
SETZF_Inf [in Quotient_CR]
SETZF_ZF' [in Quotient_CR]
SETZF_Z [in Quotient_CR]
set_not_sub [in Stage]
set_ext [in Quotient_CR]
SET_Inf [in Quotient_CE]
set_ext [in Quotient_CE]
shrink [in Truncation]
sing_union [in Basics]
sing_el [in Basics]
sing_neq [in Aczel]
sing_Aeq [in Aczel]
sing_eqcl [in Truncation]
small_red [in Basics]
Stage_Iso [in Zermelo]
Stage_btot [in Zermelo]
Stage_inhab [in Stage]
Stage_succ_limit [in Stage]
Stage_dicho [in Stage]
Stage_least [in Stage]
Stage_tricho [in Stage]
Stage_lin_el [in Stage]
Stage_lin [in Stage]
Stage_lin_succ [in Stage]
Stage_double_ind [in Stage]
Stage_inc [in Stage]
Stage_sep [in Stage]
Stage_upair [in Stage]
Stage_power [in Stage]
Stage_union [in Stage]
Stage_swelled [in Stage]
Stage_trans [in Stage]
Stage_eset [in Stage]
step [in Large]
strength_weak [in Basics]
strength_proper' [in Prelims]
subset_outside [in Basics]
sub_eset [in Basics]
sub_trans [in Basics]
sub_refl [in Basics]
swelled_sep [in Prelims]
T
tot_sur [in Zermelo]trans_strength [in Basics]
trans_power [in Basics]
trans_strength [in Large]
U
unionAx [in Permutation]unionAx [in Quotient_CR]
unionAx [in Quotient_CE]
union_power_eq [in Basics]
union_sub_el_sub [in Basics]
union_trans [in Basics]
union_eset [in Basics]
union_gel_eq [in Basics]
union_gel [in Basics]
union_lub [in Basics]
union_mono [in Basics]
union_trans_sub [in Basics]
union_sub [in Basics]
union_el_sub [in Basics]
union_proper' [in Prelims]
union_domain [in Zermelo]
union_welldef [in Quotient_CE]
union_eqclass [in Quotient_CE]
universe_least [in Stage]
universe_limit [in Stage]
universe_limit_frep [in Stage]
universe_limit' [in Stage]
universe_stage [in Stage]
universe_rank [in Stage]
universe_swelled [in Stage]
universe_trans [in Stage]
uni_strength [in Basics]
uni_strength [in Large]
upairAx [in Quotient_CR]
upairAx [in Quotient_CE]
upair_fun [in Basics]
upair_proper' [in Prelims]
upair_welldef [in Quotient_CE]
upair_eqclass [in Quotient_CE]
upair'_el [in Basics]
U_strength [in Large]
U_universe [in Large]
W
WF_no_loop3 [in Basics]WF_no_loop2 [in Basics]
WF_no_loop [in Basics]
WF_sub [in Basics]
WF_model [in Permutation]
WF_ZF [in Permutation]
WF_Z [in Permutation]
WF_frep [in Permutation]
WF_sep [in Permutation]
WF_power [in Permutation]
WF_union [in Permutation]
WF_upair [in Permutation]
WF_eset [in Permutation]
WF_swelled [in Permutation]
WF_trans [in Permutation]
WF_reachable [in Stage]
X
xm_upbnd [in Stage]Z
ZFge_cons [in Large]ZFge0 [in Large]
ZFn_ZFw [in Large]
ZFn_cons_not_provable [in Large]
ZFSDesc [in Truncation]
ZFS_model [in Permutation]
ZF_rep [in Basics]
ZF_rep' [in Basics]
ZF_proper' [in Prelims]
ZF_ZFS [in Truncation]
Z_rep [in Basics]
Constructor Index
A
Asup [in Aczel]F
FinA [in Infinity]FinE [in Infinity]
H
HFI [in Infinity]I
II [in Zermelo]S
StageS [in Stage]StageU [in Stage]
W
WFI [in Prelims]Axiom Index
C
CE [in Quotient_CE]P
PI [in Quotient_TD]PI [in Quotient_CE]
T
tdelta [in Quotient_TD]TDesc1 [in Quotient_TD]
TDesc2 [in Quotient_TD]
Projection Index
A
AxWF [in Prelims]C
CR1 [in Quotient_CR]CR2 [in Quotient_CR]
D
delta [in Prelims]Desc1 [in Prelims]
Desc2 [in Prelims]
E
elem [in Prelims]Eset [in Prelims]
eset [in Prelims]
F
Frep [in Prelims]frep [in Prelims]
H
HiZ [in Prelims]HiZF [in Prelims]
HiZF' [in Prelims]
HZ [in Prelims]
HZF [in Prelims]
HZFS [in Prelims]
HZF' [in Prelims]
M
Morph [in Prelims]N
N [in Quotient_CR]P
Pair [in Prelims]PI [in Quotient_CR]
Power [in Prelims]
power [in Prelims]
S
Sep [in Prelims]sep [in Prelims]
set [in Prelims]
U
Union [in Prelims]union [in Prelims]
upair [in Prelims]
U_frep [in Prelims]
U_Z [in Prelims]
U_sep [in Prelims]
U_power [in Prelims]
U_union [in Prelims]
U_upair [in Prelims]
U_eset [in Prelims]
U_trans [in Prelims]
Z
ZExt [in Prelims]ZFExt [in Prelims]
ZFExt' [in Prelims]
ZFSDesc1 [in Prelims]
ZFSDesc2 [in Prelims]
ZFset [in Prelims]
ZFset' [in Prelims]
ZFSExt [in Prelims]
ZFSFrep [in Prelims]
Zset [in Prelims]
Inductive Index
A
Acz [in Aczel]F
Fin [in Infinity]H
HF [in Infinity]I
Iso [in Zermelo]S
Stage [in Stage]W
WF [in Prelims]Section Index
A
AC [in Categoricity]B
Basic [in Basics]C
Categoricity [in Categoricity]Cons [in Zermelo]
CR [in Quotient_CR]
D
Domain [in Zermelo]E
Embed [in Large]I
IMISO [in Truncation]Inf [in Infinity]
Infinity [in Infinity]
Instance [in Permutation]
Iso [in Zermelo]
M
Main [in Zermelo]Mor [in Embeddings]
P
Perm [in Permutation]Proper [in Prelims]
S
Stage [in Stage]Stages [in Zermelo]
Sub [in Truncation]
U
Uncountable [in Uncountable]Universes [in Zermelo]
W
WF [in Permutation]Instance Index
A
ACZ [in Quotient_TD]Acz_ZF [in Quotient_TD]
Acz_ZF' [in Aczel]
ACZ' [in Aczel]
aeq_equiv [in Aczel]
Ain_proper [in Aczel]
Apower_proper [in Aczel]
ASubq_proper [in Aczel]
Aunion_proper [in Aczel]
Aupair_proper [in Aczel]
C
cequiv_equiv [in Prelims]E
elem_proper [in Prelims]equiv_equiv [in Prelims]
H
h_Proper [in Embeddings]I
img_Proper [in Embeddings]M
MPZF [in Truncation]MZF [in Infinity]
N
Norm [in Quotient_TD]N_proper [in Quotient_CR]
P
power_proper [in Prelims]S
SET [in Quotient_TD]SET [in Quotient_CE]
SET_ZF [in Quotient_TD]
SET_Z [in Quotient_CE]
strength_proper [in Prelims]
sub_proper [in Prelims]
U
union_proper [in Prelims]universe_proper [in Prelims]
upair_proper [in Prelims]
Z
ZF_proper [in Prelims]Abbreviation Index
B
binunion [in Prelims]C
cl [in Prelims]E
eqcl [in Prelims]G
gel [in Prelims]I
inhab [in Prelims]S
sing [in Prelims]U
upbnd [in Prelims]Definition Index
A
AC [in Categoricity]AczSS [in Aczel]
AczZS [in Aczel]
adj [in Infinity]
AEmpty [in Aczel]
Aeq [in Aczel]
agree [in Prelims]
Ain [in Aczel]
Aom [in Aczel]
Apower [in Aczel]
Arepl [in Aczel]
Asep [in Aczel]
ASubq [in Aczel]
ATS [in Quotient_TD]
Aunion [in Aczel]
Aupair [in Aczel]
B
bsur [in Zermelo]btot [in Zermelo]
C
cequiv [in Prelims]chain [in Infinity]
choice_type [in Categoricity]
class [in Quotient_CE]
classof [in Quotient_CE]
closed_rep [in Basics]
closed_frep [in Prelims]
closed_sep [in Prelims]
closed_power [in Prelims]
closed_union [in Prelims]
closed_upair [in Prelims]
closed_stage [in Stage]
const [in Prelims]
cres [in Prelims]
cswelled [in Prelims]
ctrans [in Prelims]
D
delta' [in Basics]desc [in Quotient_TD]
desc [in Truncation]
descp [in Truncation]
domain [in Zermelo]
dom_rep [in Basics]
E
ele [in Permutation]ele [in Quotient_CE]
em [in Large]
embed [in Truncation]
emclass [in Truncation]
emfun [in Quotient_CR]
empred [in Quotient_CR]
empred [in Quotient_CE]
empty [in Permutation]
empty [in Quotient_CE]
em' [in Large]
eqclass [in Quotient_CE]
equiv [in Prelims]
exmp [in Truncation]
F
F [in Permutation]finpow [in Prelims]
frepl [in Permutation]
frep' [in Basics]
fres [in Prelims]
functional [in Prelims]
G
G [in Permutation]I
i [in Zermelo]IM [in Truncation]
img [in Embeddings]
IN [in Quotient_CR]
Inf [in Prelims]
injective [in Prelims]
iseqcl [in Prelims]
iso [in Zermelo]
issing [in Truncation]
J
j [in Zermelo]L
least [in Prelims]limit [in Stage]
M
M [in Uncountable]MP [in Truncation]
MTN [in Embeddings]
MTN_fres [in Embeddings]
MtoN [in Zermelo]
M_ZF [in Permutation]
M_ZF' [in Permutation]
M_ZS [in Permutation]
M_SS [in Permutation]
N
N [in Quotient_TD]N [in Uncountable]
NS [in Quotient_CR]
NTM [in Embeddings]
Num [in Uncountable]
O
om [in Uncountable]OM [in Infinity]
om [in Infinity]
P
P [in Truncation]pair [in Permutation]
parti [in Categoricity]
pi [in Truncation]
pi1 [in Aczel]
pi2 [in Aczel]
pow [in Permutation]
power [in Quotient_CE]
power' [in Quotient_CE]
powit [in Prelims]
preim [in Embeddings]
PS [in Truncation]
PZ [in Truncation]
PZF' [in Truncation]
R
R [in Permutation]range [in Zermelo]
rank [in Stage]
reachable [in Stage]
rep [in Basics]
rep' [in Truncation]
rho [in Stage]
rho' [in Stage]
R' [in Permutation]
S
Sempty [in Quotient_CR]sep [in Quotient_CE]
sepa [in Permutation]
sep' [in Basics]
sep' [in Quotient_CE]
SETSS [in Quotient_CR]
SETSS [in Quotient_CE]
SETZF' [in Quotient_CR]
SETZS [in Quotient_CR]
SET' [in Quotient_CR]
SET' [in Quotient_CE]
sing1 [in Aczel]
sing2 [in Aczel]
small [in Prelims]
Spower [in Quotient_CR]
Srepl [in Quotient_CR]
Ssep [in Quotient_CR]
ST [in Large]
strength [in Prelims]
sub [in Prelims]
sub [in Permutation]
sub [in Quotient_CE]
Subq [in Quotient_CR]
succ [in Stage]
Sunion [in Quotient_CR]
Supair [in Quotient_CR]
surjective [in Prelims]
swelled [in Prelims]
T
toP [in Truncation]total [in Prelims]
trace [in Categoricity]
trans [in Prelims]
U
U [in Large]uni [in Permutation]
union [in Quotient_CE]
union' [in Quotient_CE]
unique [in Prelims]
universe [in Prelims]
upair [in Quotient_CE]
upair' [in Basics]
upair' [in Quotient_CE]
Z
ZFge [in Prelims]ZFn [in Prelims]
ZFw [in Prelims]
Record Index
C
closed_ZF [in Prelims]closed_Z [in Prelims]
I
iZ [in Prelims]iZF [in Prelims]
iZF' [in Prelims]
iZS [in Prelims]
N
Normalizer [in Quotient_CR]S
SetStruct [in Prelims]Z
Z [in Prelims]ZF [in Prelims]
ZFS [in Prelims]
ZFStruct [in Prelims]
ZFStruct' [in Prelims]
ZF' [in Prelims]
ZStruct [in Prelims]
Global Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (793 entries) |
Notation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (10 entries) |
Variable Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (26 entries) |
Library Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (15 entries) |
Lemma Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (443 entries) |
Constructor Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (8 entries) |
Axiom Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (6 entries) |
Projection Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (48 entries) |
Inductive Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (6 entries) |
Section Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (22 entries) |
Instance Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (30 entries) |
Abbreviation Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (7 entries) |
Definition Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (157 entries) |
Record Index | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | _ | other | (15 entries) |