From Undecidability.FOL Require Import FullSyntax Utils.FriedmanTranslation.
From Undecidability.FOL.Arithmetics Require Import Signature FA Robinson NatModel.
From Undecidability.FOL.Incompleteness Require Import fol_utils qdec.
From Undecidability.FOL.Proofmode Require Import Theories ProofMode.
Require Import Lia.
Require Import String.
Open Scope string_scope.
Section Sigma1.
Existing Instance PA_preds_signature.
Existing Instance PA_funcs_signature.
Context {p : peirce}.
Inductive Σ1 : form -> Prop :=
| Sigma_exists : forall α, Σ1 α -> Σ1 (∃ α)
| Sigma_Delta : forall α, Qdec α -> Σ1 α.
Inductive Π1 : form -> Prop :=
| Pi_forall : forall α, Π1 α -> Π1 (∀ α)
| Pi_Delta : forall α, Qdec α -> Π1 α.
Lemma Σ1_subst φ ρ : Σ1 φ -> Σ1 φ[ρ].
Proof.
induction 1 as [α H IH | α H] in ρ |-*.
- cbn. constructor. apply IH.
- constructor. apply Qdec_subst, H.
Qed.
Lemma Π1_subst φ ρ : Π1 φ -> Π1 φ[ρ].
Proof.
induction 1 as [α H IH | α H] in ρ |-*.
- cbn. constructor. apply IH.
- constructor. apply Qdec_subst, H.
Qed.
Lemma exist_times_Σ1 n φ :
Σ1 φ -> Σ1 (exist_times n φ).
Proof.
intros H. induction n.
- easy.
- now constructor.
Qed.
Lemma exists_compression_2 φ n : Qdec φ -> bounded (S (S n)) φ -> exists ψ, Qdec ψ /\ bounded (S n) ψ /\ Qeq ⊢ (∃∃φ) ↔ (∃ψ).
Proof.
intros HQ Hb.
exists (∃ ($0 ⧀= $1) ∧ ∃ ($0 ⧀=' $2) ∧ φ[up (up (S >> var))]).
repeat split.
{ apply (@Qdec_bounded_exists $0), (@Qdec_bounded_exists_comm $1).
apply Qdec_subst, HQ. }
{ repeat solve_bounds.
eapply subst_bounded_max; last eassumption.
intros n' H'.
destruct n' as [|[|n']]; cbn; unfold "↑"; cbn; constructor; lia. }
fstart. fsplit.
- fintros "[x [y H]]". fexists (x ⊕ y).
fexists x. fsplit.
{ fexists y. fapply ax_refl. }
fexists y. fsplit.
{ fexists x. fapply ax_refl. }
asimpl. ctx.
- fintros "[z [x [Hx [y [Hy H]]]]]".
fexists x. fexists y.
asimpl. ctx.
Qed.
Lemma exists_compression φ k n : bounded (n + k) φ -> Qdec φ ->
exists ψ, Qdec ψ /\ bounded (S k) ψ /\ Qeq ⊢ exist_times n φ ↔ ∃ ψ.
Proof.
intros Hb HQ. revert Hb. induction n as [|n IH] in k |-*.
2: destruct n. all: cbn.
all: intros Hb.
- exists φ[↑]. repeat split.
{ now apply Qdec_subst. }
{ eapply subst_bounded_max; last apply Hb. intros n H. constructor. lia. }
fsplit.
+ fintros. fexists zero. ctx.
+ fintros. fdestruct 0. ctx.
- exists φ. repeat split.
+ assumption.
+ cbn. replace (k - 0) with k by lia. assumption.
+ fsplit; fintros; ctx.
- destruct (IH (S k)) as (ψ & HQ' & Hb' & H).
{ now replace (S n + S k) with (S (S n) + k) by lia. }
edestruct (@exists_compression_2 ψ) as (ψ' & HΔψ & Hbψ' & Hψ).
1-2: eassumption.
exists ψ'. repeat split; try easy. cbn in H.
fsplit; fstart.
+ fintros "[x H]".
fapply Hψ. fexists x.
apply subst_Weak with (xi := x..) in H.
cbn in H. fapply H. ctx.
+ fintros "H". fapply Hψ in "H".
fdestruct "H" as "[x H]". fexists x.
apply subst_Weak with (xi := x..) in H.
fapply H. ctx.
Qed.
Lemma Σ1_exist_times φ : Σ1 φ -> exists n ψ, Qdec ψ /\ φ = exist_times n ψ.
Proof.
induction 1 as [φ H (n & ψ & HΔ & Hψ)|φ H].
- exists (S n), ψ. now rewrite Hψ.
- now exists 0, φ.
Qed.
Lemma bounded_exist_times φ n k : bounded (n + k) φ <-> bounded k (exist_times n φ).
Proof.
induction n in k |-*; split.
- easy.
- easy.
- cbn. intros H. constructor. apply IHn. replace (n + S k) with (S n + k) by lia. apply H.
- cbn. invert_bounds. replace (S (n + k)) with (n + (S k)) by lia. now apply IHn.
Qed.
End Sigma1.
Section Sigma1.
Existing Instance PA_preds_signature.
Existing Instance PA_funcs_signature.
Context {p : peirce}.
Lemma Σ1_compression φ n : bounded n φ -> Σ1 φ -> exists ψ, Qdec ψ /\ bounded (S n) ψ /\ Qeq ⊢I φ ↔ ∃ψ.
Proof.
intros Hb (k & ψ & HΔ & ->)%Σ1_exist_times.
destruct (@exists_compression intu ψ n k) as (ψ' & HΔ' & Hb' & H').
all: firstorder using bounded_exist_times.
Qed.
End Sigma1.
Section Sigma1completeness.
Existing Instance PA_preds_signature.
Existing Instance PA_funcs_signature.
Existing Instance intu.
Lemma Σ1_completeness_intu φ : Σ1 φ -> bounded 0 φ -> interp_nat ⊨= φ -> Qeq ⊢ φ.
Proof.
enough (forall ρ, Σ1 φ -> bounded 0 φ[ρ] -> interp_nat ⊨= φ[ρ] -> Qeq ⊢ φ[ρ]).
{ intros HΣ Hb Hsat. rewrite <-subst_var. apply H.
- easy.
- now rewrite subst_var.
- intros ρ'. rewrite subst_var. apply Hsat. }
intros ρ. induction 1 as [φ H IH|φ H] in ρ |-*.
- cbn. invert_bounds.
intros Hnat. destruct (Hnat (fun _ => 0)) as [d Hd].
fexists (num d). rewrite subst_comp. apply IH.
+ rewrite <-subst_comp. eapply subst_bounded_max; last apply H4.
intros [|n] Hn; last lia. apply num_bound.
+ intros ρ'. rewrite <-subst_comp.
rewrite sat_single_nat in Hd.
eapply sat_closed; last apply Hd.
eapply subst_bounded_max; last apply H4.
intros [|n] Hn; last lia. apply num_bound.
- intros Hb Hnat.
assert (Qdec φ[ρ]) as H'.
{ apply Qdec_subst, H. }
destruct (H' intu (fun _ => zero)) as [H1|H1].
{ intros _. solve_bounds. }
+ rewrite bounded_0_subst in H1; assumption.
+ eapply soundness in H1. cbn in H1. unfold valid_ctx in H1.
specialize (H1 _ interp_nat (fun _ => 0) (nat_is_Q_model _)).
cbn in H1. destruct H1. rewrite bounded_0_subst; auto.
Qed.
End Sigma1completeness.
Section conservativity.
Existing Instance PA_preds_signature.
Existing Instance PA_funcs_signature.
Lemma Σ1_conservativity ϕ :
Σ1 ϕ -> bounded 0 ϕ -> Qeq ⊢C ϕ -> Qeq ⊢I ϕ.
Proof.
intros S1 Hcl Htc.
destruct (Σ1_compression Hcl S1) as [α (dec_α & b1_α & Hα)].
assert (bounded 0 (∃ α)) as b0_α by (now solve_bounds).
eapply IE with (∃ α).
1: eapply CE2; apply Hα.
apply Σ1_completeness_intu; auto.
1: do 2 constructor; auto.
assert (Qeq ⊢C ∃ α) as H.
{ eapply IE with ϕ; auto.
apply prv_intu_peirce.
eapply CE1. apply Hα. }
apply Fr_cl_to_min, soundness in H.
refine (let H' := H nat (extend_interp interp_nat _) (fun _ => 0) _ in _).
cbn in H'; apply H'. clear H H'.
intros [n Hn].
destruct (dec_α intu (fun _ => num n)) as [H|H].
- intro. apply num_bound.
- exists n. apply soundness in H.
eapply sat_single_nat.
erewrite bounded_subst.
+ apply H, nat_is_Q_model.
+ eauto.
+ intros []; [reflexivity|lia].
- eapply prv_intu_peirce in H.
apply Fr_cl_to_min, soundness in H.
refine (let H' := H nat (extend_interp interp_nat _) (fun _ => 0) _ in _).
cbn in H'. apply H'; clear H H'.
rewrite <-subst_Fr. apply sat_comp.
eapply bound_ext with (N:=1).
3 : apply Hn.
{ now apply bounded_Fr. }
intros []; [intros _;cbn|lia].
apply nat_eval_num.
Unshelve. all: apply nat_sat_Fr_Q.
Qed.
Context `{pei : peirce}.
Lemma Σ1_soundness ϕ :
Σ1 ϕ -> bounded 0 ϕ -> Qeq ⊢ ϕ -> interp_nat ⊨= ϕ.
Proof.
intros HΣ Hb Hϕ. intros ρ.
destruct pei eqn:H; eapply soundness.
- apply Σ1_conservativity.
* congruence.
* assumption.
* assumption.
- apply nat_is_Q_model.
- apply Hϕ.
- apply nat_is_Q_model.
Qed.
End conservativity.
Section Sigma1completeness.
Existing Instance PA_preds_signature.
Existing Instance PA_funcs_signature.
Context `{pei : peirce}.
Theorem Σ1_completeness φ : Σ1 φ -> bounded 0 φ -> interp_nat ⊨= φ -> Qeq ⊢ φ.
Proof.
destruct pei; last apply Σ1_completeness_intu.
enough (forall ρ, Σ1 φ -> bounded 0 φ[ρ] -> interp_nat ⊨= φ[ρ] -> Qeq ⊢C φ[ρ]).
{ intros HΣ Hb Hsat. rewrite <-subst_var. apply H.
- easy.
- now rewrite subst_var.
- intros ρ'. rewrite subst_var. apply Hsat. }
intros ρ. induction 1 as [φ H IH|φ H] in ρ |-*.
- cbn. invert_bounds.
intros Hnat. destruct (Hnat (fun _ => 0)) as [d Hd].
remember intu as Hintu. fexists (num d). rewrite subst_comp. apply IH.
+ rewrite <-subst_comp. eapply subst_bounded_max; last apply H4.
intros [|n] Hn; last lia. apply num_bound.
+ intros ρ'. rewrite <-subst_comp.
rewrite sat_single_nat in Hd.
eapply sat_closed; last apply Hd.
eapply subst_bounded_max; last apply H4.
intros [|n] Hn; last lia. apply num_bound.
- intros Hb Hnat.
assert (@Qdec φ[ρ]) as H'.
{ apply Qdec_subst, H. }
destruct (H' class (fun _ => zero)) as [H1|H1].
{ intros _. solve_bounds. }
all: rewrite bounded_0_subst in H1; try eassumption.
contradict Hnat.
apply Σ1_soundness with (rho := fun _ => 0) in H1.
+ cbn in H1. contradict H1. apply H1.
+ constructor. apply Qdec_impl.
* assumption.
* apply Qdec_bot.
+ now solve_bounds.
Qed.
Theorem Σ1_witness φ : Σ1 φ -> bounded 1 φ -> Qeq ⊢ ∃φ -> exists x, Qeq ⊢ φ[(num x)..].
Proof.
intros Hb HΣ Hφ. eapply Σ1_soundness with (rho := fun _ => 0) in Hφ as [x Hx].
exists x. eapply Σ1_completeness.
- now apply Σ1_subst.
- eapply subst_bounded_max; last eassumption.
intros [|n] H; last lia. apply num_bound.
- intros ρ. rewrite sat_single_nat in Hx.
eapply sat_closed; last eassumption.
eapply subst_bounded_max; last eassumption.
intros [|n] H; lia + apply num_bound.
- now constructor.
- now constructor.
Qed.
End Sigma1completeness.
From Undecidability.FOL.Arithmetics Require Import Signature FA Robinson NatModel.
From Undecidability.FOL.Incompleteness Require Import fol_utils qdec.
From Undecidability.FOL.Proofmode Require Import Theories ProofMode.
Require Import Lia.
Require Import String.
Open Scope string_scope.
Section Sigma1.
Existing Instance PA_preds_signature.
Existing Instance PA_funcs_signature.
Context {p : peirce}.
Inductive Σ1 : form -> Prop :=
| Sigma_exists : forall α, Σ1 α -> Σ1 (∃ α)
| Sigma_Delta : forall α, Qdec α -> Σ1 α.
Inductive Π1 : form -> Prop :=
| Pi_forall : forall α, Π1 α -> Π1 (∀ α)
| Pi_Delta : forall α, Qdec α -> Π1 α.
Lemma Σ1_subst φ ρ : Σ1 φ -> Σ1 φ[ρ].
Proof.
induction 1 as [α H IH | α H] in ρ |-*.
- cbn. constructor. apply IH.
- constructor. apply Qdec_subst, H.
Qed.
Lemma Π1_subst φ ρ : Π1 φ -> Π1 φ[ρ].
Proof.
induction 1 as [α H IH | α H] in ρ |-*.
- cbn. constructor. apply IH.
- constructor. apply Qdec_subst, H.
Qed.
Lemma exist_times_Σ1 n φ :
Σ1 φ -> Σ1 (exist_times n φ).
Proof.
intros H. induction n.
- easy.
- now constructor.
Qed.
Lemma exists_compression_2 φ n : Qdec φ -> bounded (S (S n)) φ -> exists ψ, Qdec ψ /\ bounded (S n) ψ /\ Qeq ⊢ (∃∃φ) ↔ (∃ψ).
Proof.
intros HQ Hb.
exists (∃ ($0 ⧀= $1) ∧ ∃ ($0 ⧀=' $2) ∧ φ[up (up (S >> var))]).
repeat split.
{ apply (@Qdec_bounded_exists $0), (@Qdec_bounded_exists_comm $1).
apply Qdec_subst, HQ. }
{ repeat solve_bounds.
eapply subst_bounded_max; last eassumption.
intros n' H'.
destruct n' as [|[|n']]; cbn; unfold "↑"; cbn; constructor; lia. }
fstart. fsplit.
- fintros "[x [y H]]". fexists (x ⊕ y).
fexists x. fsplit.
{ fexists y. fapply ax_refl. }
fexists y. fsplit.
{ fexists x. fapply ax_refl. }
asimpl. ctx.
- fintros "[z [x [Hx [y [Hy H]]]]]".
fexists x. fexists y.
asimpl. ctx.
Qed.
Lemma exists_compression φ k n : bounded (n + k) φ -> Qdec φ ->
exists ψ, Qdec ψ /\ bounded (S k) ψ /\ Qeq ⊢ exist_times n φ ↔ ∃ ψ.
Proof.
intros Hb HQ. revert Hb. induction n as [|n IH] in k |-*.
2: destruct n. all: cbn.
all: intros Hb.
- exists φ[↑]. repeat split.
{ now apply Qdec_subst. }
{ eapply subst_bounded_max; last apply Hb. intros n H. constructor. lia. }
fsplit.
+ fintros. fexists zero. ctx.
+ fintros. fdestruct 0. ctx.
- exists φ. repeat split.
+ assumption.
+ cbn. replace (k - 0) with k by lia. assumption.
+ fsplit; fintros; ctx.
- destruct (IH (S k)) as (ψ & HQ' & Hb' & H).
{ now replace (S n + S k) with (S (S n) + k) by lia. }
edestruct (@exists_compression_2 ψ) as (ψ' & HΔψ & Hbψ' & Hψ).
1-2: eassumption.
exists ψ'. repeat split; try easy. cbn in H.
fsplit; fstart.
+ fintros "[x H]".
fapply Hψ. fexists x.
apply subst_Weak with (xi := x..) in H.
cbn in H. fapply H. ctx.
+ fintros "H". fapply Hψ in "H".
fdestruct "H" as "[x H]". fexists x.
apply subst_Weak with (xi := x..) in H.
fapply H. ctx.
Qed.
Lemma Σ1_exist_times φ : Σ1 φ -> exists n ψ, Qdec ψ /\ φ = exist_times n ψ.
Proof.
induction 1 as [φ H (n & ψ & HΔ & Hψ)|φ H].
- exists (S n), ψ. now rewrite Hψ.
- now exists 0, φ.
Qed.
Lemma bounded_exist_times φ n k : bounded (n + k) φ <-> bounded k (exist_times n φ).
Proof.
induction n in k |-*; split.
- easy.
- easy.
- cbn. intros H. constructor. apply IHn. replace (n + S k) with (S n + k) by lia. apply H.
- cbn. invert_bounds. replace (S (n + k)) with (n + (S k)) by lia. now apply IHn.
Qed.
End Sigma1.
Section Sigma1.
Existing Instance PA_preds_signature.
Existing Instance PA_funcs_signature.
Context {p : peirce}.
Lemma Σ1_compression φ n : bounded n φ -> Σ1 φ -> exists ψ, Qdec ψ /\ bounded (S n) ψ /\ Qeq ⊢I φ ↔ ∃ψ.
Proof.
intros Hb (k & ψ & HΔ & ->)%Σ1_exist_times.
destruct (@exists_compression intu ψ n k) as (ψ' & HΔ' & Hb' & H').
all: firstorder using bounded_exist_times.
Qed.
End Sigma1.
Section Sigma1completeness.
Existing Instance PA_preds_signature.
Existing Instance PA_funcs_signature.
Existing Instance intu.
Lemma Σ1_completeness_intu φ : Σ1 φ -> bounded 0 φ -> interp_nat ⊨= φ -> Qeq ⊢ φ.
Proof.
enough (forall ρ, Σ1 φ -> bounded 0 φ[ρ] -> interp_nat ⊨= φ[ρ] -> Qeq ⊢ φ[ρ]).
{ intros HΣ Hb Hsat. rewrite <-subst_var. apply H.
- easy.
- now rewrite subst_var.
- intros ρ'. rewrite subst_var. apply Hsat. }
intros ρ. induction 1 as [φ H IH|φ H] in ρ |-*.
- cbn. invert_bounds.
intros Hnat. destruct (Hnat (fun _ => 0)) as [d Hd].
fexists (num d). rewrite subst_comp. apply IH.
+ rewrite <-subst_comp. eapply subst_bounded_max; last apply H4.
intros [|n] Hn; last lia. apply num_bound.
+ intros ρ'. rewrite <-subst_comp.
rewrite sat_single_nat in Hd.
eapply sat_closed; last apply Hd.
eapply subst_bounded_max; last apply H4.
intros [|n] Hn; last lia. apply num_bound.
- intros Hb Hnat.
assert (Qdec φ[ρ]) as H'.
{ apply Qdec_subst, H. }
destruct (H' intu (fun _ => zero)) as [H1|H1].
{ intros _. solve_bounds. }
+ rewrite bounded_0_subst in H1; assumption.
+ eapply soundness in H1. cbn in H1. unfold valid_ctx in H1.
specialize (H1 _ interp_nat (fun _ => 0) (nat_is_Q_model _)).
cbn in H1. destruct H1. rewrite bounded_0_subst; auto.
Qed.
End Sigma1completeness.
Section conservativity.
Existing Instance PA_preds_signature.
Existing Instance PA_funcs_signature.
Lemma Σ1_conservativity ϕ :
Σ1 ϕ -> bounded 0 ϕ -> Qeq ⊢C ϕ -> Qeq ⊢I ϕ.
Proof.
intros S1 Hcl Htc.
destruct (Σ1_compression Hcl S1) as [α (dec_α & b1_α & Hα)].
assert (bounded 0 (∃ α)) as b0_α by (now solve_bounds).
eapply IE with (∃ α).
1: eapply CE2; apply Hα.
apply Σ1_completeness_intu; auto.
1: do 2 constructor; auto.
assert (Qeq ⊢C ∃ α) as H.
{ eapply IE with ϕ; auto.
apply prv_intu_peirce.
eapply CE1. apply Hα. }
apply Fr_cl_to_min, soundness in H.
refine (let H' := H nat (extend_interp interp_nat _) (fun _ => 0) _ in _).
cbn in H'; apply H'. clear H H'.
intros [n Hn].
destruct (dec_α intu (fun _ => num n)) as [H|H].
- intro. apply num_bound.
- exists n. apply soundness in H.
eapply sat_single_nat.
erewrite bounded_subst.
+ apply H, nat_is_Q_model.
+ eauto.
+ intros []; [reflexivity|lia].
- eapply prv_intu_peirce in H.
apply Fr_cl_to_min, soundness in H.
refine (let H' := H nat (extend_interp interp_nat _) (fun _ => 0) _ in _).
cbn in H'. apply H'; clear H H'.
rewrite <-subst_Fr. apply sat_comp.
eapply bound_ext with (N:=1).
3 : apply Hn.
{ now apply bounded_Fr. }
intros []; [intros _;cbn|lia].
apply nat_eval_num.
Unshelve. all: apply nat_sat_Fr_Q.
Qed.
Context `{pei : peirce}.
Lemma Σ1_soundness ϕ :
Σ1 ϕ -> bounded 0 ϕ -> Qeq ⊢ ϕ -> interp_nat ⊨= ϕ.
Proof.
intros HΣ Hb Hϕ. intros ρ.
destruct pei eqn:H; eapply soundness.
- apply Σ1_conservativity.
* congruence.
* assumption.
* assumption.
- apply nat_is_Q_model.
- apply Hϕ.
- apply nat_is_Q_model.
Qed.
End conservativity.
Section Sigma1completeness.
Existing Instance PA_preds_signature.
Existing Instance PA_funcs_signature.
Context `{pei : peirce}.
Theorem Σ1_completeness φ : Σ1 φ -> bounded 0 φ -> interp_nat ⊨= φ -> Qeq ⊢ φ.
Proof.
destruct pei; last apply Σ1_completeness_intu.
enough (forall ρ, Σ1 φ -> bounded 0 φ[ρ] -> interp_nat ⊨= φ[ρ] -> Qeq ⊢C φ[ρ]).
{ intros HΣ Hb Hsat. rewrite <-subst_var. apply H.
- easy.
- now rewrite subst_var.
- intros ρ'. rewrite subst_var. apply Hsat. }
intros ρ. induction 1 as [φ H IH|φ H] in ρ |-*.
- cbn. invert_bounds.
intros Hnat. destruct (Hnat (fun _ => 0)) as [d Hd].
remember intu as Hintu. fexists (num d). rewrite subst_comp. apply IH.
+ rewrite <-subst_comp. eapply subst_bounded_max; last apply H4.
intros [|n] Hn; last lia. apply num_bound.
+ intros ρ'. rewrite <-subst_comp.
rewrite sat_single_nat in Hd.
eapply sat_closed; last apply Hd.
eapply subst_bounded_max; last apply H4.
intros [|n] Hn; last lia. apply num_bound.
- intros Hb Hnat.
assert (@Qdec φ[ρ]) as H'.
{ apply Qdec_subst, H. }
destruct (H' class (fun _ => zero)) as [H1|H1].
{ intros _. solve_bounds. }
all: rewrite bounded_0_subst in H1; try eassumption.
contradict Hnat.
apply Σ1_soundness with (rho := fun _ => 0) in H1.
+ cbn in H1. contradict H1. apply H1.
+ constructor. apply Qdec_impl.
* assumption.
* apply Qdec_bot.
+ now solve_bounds.
Qed.
Theorem Σ1_witness φ : Σ1 φ -> bounded 1 φ -> Qeq ⊢ ∃φ -> exists x, Qeq ⊢ φ[(num x)..].
Proof.
intros Hb HΣ Hφ. eapply Σ1_soundness with (rho := fun _ => 0) in Hφ as [x Hx].
exists x. eapply Σ1_completeness.
- now apply Σ1_subst.
- eapply subst_bounded_max; last eassumption.
intros [|n] H; last lia. apply num_bound.
- intros ρ. rewrite sat_single_nat in Hx.
eapply sat_closed; last eassumption.
eapply subst_bounded_max; last eassumption.
intros [|n] H; lia + apply num_bound.
- now constructor.
- now constructor.
Qed.
End Sigma1completeness.