Require Import mathcomp.ssreflect.ssreflect.
From mathcomp Require Import all_ssreflect.
From libs Require Import edone bcase fset base modular_hilbert.
Require Import CTL_def hilbert.
Import IC.
Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.
From mathcomp Require Import all_ssreflect.
From libs Require Import edone bcase fset base modular_hilbert.
Require Import CTL_def hilbert.
Import IC.
Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.
Agreement of Paths Semantics and Inductive Semantics
Agreement on Finite Models
Lemma xchoose_rel (T : choiceType) (e : rel T) :
(forall x, exists y, e x y) -> exists f, forall x, e x (f x).
Proof.
move => serial_e. exists (fun x => xchoose (serial_e x)) => x.
exact: xchooseP.
Qed.
We show that the path semantics agrees with the boolean reflections for the
inductive semantics on finite models.
Section Agreement.
Variables (T: finType) (e : rel T) (p q : pred T).
Hypothesis serial_e : forall x, exists y, e x y.
Local Notation AUb := (AUb e p q).
Local Notation ARb := (ARb e p q).
Lemma auP2 w : reflect (pAU e p q w) (AUb w).
Proof.
rewrite /AUb; apply: introP => [|nLfp].
- move: w. pattern (lfp (AU_fun e p q)). apply: lfp_ind; first by move => ?; rewrite inE.
move => X IH w. case/setUP; rewrite !inE.
+ move => qw pi pi1 pi2. exists 0 => //; congruence.
+ case/andP => pw /forall_inP inX pi pi1 pi2.
rewrite -pi2 in inX. move: (IH _ (inX _ (pi1 0)) (ptail pi)).
repeat case/(_ _)/Wrap => //; first exact: path_ptail.
case => m m1 m2. exists m.+1 => //. case => //; congruence.
- pose e' := [rel x y | e x y && (~~ AUb x ==> p x ==> ~~ AUb y)].
have E x : exists y, e' x y.
case: (boolP (AUb x)); case: (boolP (p x)) => px pAU;
try by case: (serial_e x) => y xy; exists y => //= ; rewrite ?(negbTE px); bcase.
move: pAU. rewrite /AUb (lfpE (AU_mono e p q)) !inE negb_or px negb_and negb_forall /=.
case/andP => _ /existsP [y]. rewrite negb_imply. case/andP => *. exists y. bcase.
case: (xchoose_rel E) => f Hf.
pose pi n := iter n f w.
have Pe': path [eta e'] pi by move => n; move : (Hf (pi n)).
suff S k : (exists2 m : nat, m < k & ~ p (pi m)) \/ ~~ AUb (pi k).
apply: pAU_pER. exists pi. split => // n; first by case/andP : (Hf (pi n)).
case: (S n); first tauto.
rewrite /AUb (lfpE (AU_mono e p q)) !inE negb_or => /andP [/negP ? _]. tauto.
elim: k => [|k IHk]; first by right.
case: IHk => [[m]|AR]; first by left; exists m => //; exact: ltnW.
case: (boolP (~~ p (pi k))) => [/negP|/negPn pk] ; first by left; exists k.
right. move: (Pe' k). rewrite /= AR pk /=. by bcase.
Qed.
Lemma pARE1 w : pAR e p q w -> q w.
Proof.
case: (xchoose_rel serial_e) => f Hf.
have pth: path e (fun n => iter n f w) by move => m; exact: Hf.
move => Hw. case: (Hw (fun n => iter n f w) pth (erefl _) 0) => //. by case.
Qed.
Lemma pARE2 w v : pAR e p q w -> ~~ p w -> e w v -> pAR e p q v.
Proof.
move => Hw pw wv pi p1 p2 n.
case/(_ _ (erefl _))/Wrap: (@Hw (pcons w pi)). apply: path_pcons => //; congruence.
move/(_ n.+1) => /=. intuition. case: H => [[|m]] Hm Hm'.
- by rewrite /= (negbTE pw) in Hm'.
- left. by exists m.
Qed.
Lemma arP2 w : reflect (pAR e p q w) (ARb w).
Proof.
apply: (iffP arP).
- move => H pi p1 p2.
suff S n : (exists2 m : nat, m < n & p (pi m)) \/ cAR e p q (pi n).
move => n. case: (S n); first tauto. by case; right.
elim: n => [|n IHn]; first by right; congruence.
case: IHn => [[m]|]; first by left; exists m => //; exact: ltnW.
case => [? ?|qn CI]; first by left; exists n.
right. apply CI. exact: p1.
- move: w. cofix arP2 => w Hw.
case: (boolP (p w)) => Hp.
* apply: AR0. exact: Hp. exact: pARE1.
* apply: ARs => [|v wv]. exact: pARE1. apply: arP2. exact: pARE2 wv.
Qed.
End Agreement.
Given the agreement for AU and AR, agreement between the two semantics
follows using a simple induction on formulas
Lemma evalP2 (M:fmodel) s (w : M) : satisfies s w <-> eval s w.
Proof.
apply: rwP2 (evalP w s).
elim: s w => [|x|s IHs t IHt|s IHs|s IHs t IHt|s IHs t IHt] w /=.
- by constructor.
- exact: idP.
- apply: iffP (@implyP _ _) _ _ => ? /IHs ?; apply/IHt; firstorder.
- apply: iffP (@forall_inP _ _ _) _ _ => H v /H /IHs; done.
- apply: iffP (@arP2 _ _ _ _ _ _ ) _ _; first exact: fser;
apply: pAR_strengthen; intuition; solve [exact/IHs|exact/IHt].
- apply: iffP (@auP2 _ _ _ _ _ _ ) _ _;first exact: fser;
apply: pAU_strengthen; intuition; solve [exact/IHs|exact/IHt].
Qed.
Agreement on General Models
Lemma dn (xm : XM) : forall P, ~ ~ P -> P.
Proof. move => P HP. case: (xm P); tauto. Qed.
Lemma dmAll (xm : XM) X (P : X -> Prop) : (~ forall x, P x) -> exists x, ~ P x.
Proof.
move => H. apply: (dn xm) => C. apply H => x. apply: (dn xm) => nPx. firstorder.
Qed.
Lemma nImp (xm : XM) (P Q : Prop) : ~ (P -> Q) -> P /\ ~ Q.
Proof. case: (xm P); tauto. Qed.
Section Paths.
Variables (X : Type) (R : X -> X -> Prop) (P Q : X -> Prop).
Hypothesis (R_serial : forall x, exists y, R x y).
Implicit Types (f g : nat -> X).
Lemma dmAU (xm : XM) w : ~ cAU R P Q w -> cER R (PredC P) (PredC Q) w.
Proof.
move: w. cofix dmAU => w Hw.
have nQw: (~ Q w). move => c. apply Hw. exact: AU0.
case: (xm (P w)) => [pw|nPw]; last exact: ER0.
suff {dmAU} [v v1 v2] : exists2 v, R w v & ~ cAU R P Q v.
apply: ERs v1 _. exact: nQw. exact: dmAU.
apply: (dn xm) => C. apply: Hw. apply: AUs pw _ => v wv.
apply: (dn xm) => C'. apply: C. by exists v.
Qed.
Lemma dmAR (xm : XM) w : ~ cAR R P Q w -> cEU R (PredC P) (PredC Q) w.
Proof.
move => H. apply: (dn xm) => C. apply: H.
move: w C. cofix dmAR => w Hw.
have Qw : Q w. apply: (dn xm) => H. apply Hw. exact: EU0.
case: (xm (P w)) => [Pw|nPw]; first exact: AR0.
apply: ARs Qw _ => v wv. apply: dmAR => C. apply: Hw. exact: EUs C.
Qed.
Lemma dmpAR (xm : XM) w : ~ pAR R P Q w -> pEU R (PredC P) (PredC Q) w.
Proof.
move => H. apply: (dn xm) => H'. apply: H => pi p1 p2 n.
apply: (dn xm) => C. apply: H'. exists pi. by firstorder.
Qed.
Lemma EU1 (dc : DC_ X) w : cEU R P Q w -> pEU R P Q w.
Proof.
elim => {w} [w Qw|w v Pw wv _ IH].
+ case: (dc _ R_serial w) => f ? ?. exists f. split => //. exists 0 => //. congruence.
+ case: IH => f [f1 f2 [n Bn Qn]]. exists (pcons w f).
split => //. apply: path_pcons => //; by rewrite f2.
exists n.+1 => //. by case.
Qed.
Lemma EU2 w : pEU R P Q w -> cEU R P Q w.
Proof.
case => f [f1 f2 [n n1 n2]].
elim: n w f f1 f2 n1 n2 => [w f _ -> _|n IH w f f1 f2 n1 n2]; first exact: EU0.
rewrite -f2. apply: EUs (f1 0) _. exact: n1.
apply: (IH _ (ptail f)) => //. exact: path_ptail.
move => k. rewrite -ltnS. exact: n1.
Qed.
Lemma AU1 w : cAU R P Q w -> pAU R P Q w.
Proof.
elim => {w} [w Qw|w Pw _ IH].
- move => f _ f2. exists 0; by [|congruence].
- move => f pf f0. rewrite -f0 in IH.
case: (IH _ (pf 0) (ptail f)) => // [|n n1 n2]. exact: path_ptail.
exists n.+1 => //. case => [|k]. congruence. exact: n1.
Qed.
This is, up to duality, the converse direction of AU1, see AU2 below
Lemma ER1 (xm : XM ) (dc : DC_ X) w : cER R P Q w -> pER R P Q w.
Proof.
move => H.
pose R' x y := R x y /\ (cER R P Q x -> ~ P x -> cER R P Q y).
have R'_serial x : exists y, R' x y.
case: (xm (cER R P Q x)); case: (xm (P x)); try by case: (R_serial x) => y; exists y.
move => nPx [//|y]. by exists y.
case: (dc _ R'_serial w) => f f0 pf.
exists f. split => //; first by move => n; apply pf.
suff S n : cER R P Q (f n) \/ (exists2 k : nat, k < n & P (f k)).
move => n. case (S n);[ case; tauto|tauto].
elim: n => [|n [IHn|IHn]]; first by rewrite f0; tauto.
- case: (xm (P (f n))) => HP; [right; by exists n|left].
case: (pf n) => _. by apply.
- right. case: IHn => k ? ?. exists k => //. exact: ltnW.
Qed.
End Paths.
Section Paths2.
Variables (X : Type) (R : X -> X -> Prop).
Hypothesis (R_serial : forall x, exists y, R x y).
Lemma AU2 (xm : XM) (dc : DC_ X) P Q w : pAU R P Q w -> cAU R P Q w.
Proof.
move => H. apply: (dn xm) => C.
apply (dmAU xm) in C. apply (ER1 R_serial xm dc) in C.
move: H. exact: pAU_pER.
Qed.
Lemma ER2 (xm : XM) P Q w : pER R P Q w -> cER R P Q w.
Proof.
move => H. apply: (dn xm) => C.
have H' : pER R (PredC (PredC P)) (PredC (PredC Q)) w.
apply: pER_strengthen H => v; by firstorder.
apply pAU_pER in H'.
apply: H'. apply: AU1. apply: (dn xm) => C'. apply (dmAU xm) in C'.
apply: C. apply: ER_strengthen C' => ?; exact: (dn xm).
Qed.
Lemma AR1 (xm : XM) (dc : DC_ X) P Q w : pAR R P Q w -> cAR R P Q w.
Proof.
move => H. apply: (dn xm) => C.
apply (dmAR xm) in C. apply (EU1 R_serial dc) in C.
exact: pAR_pEU H.
Qed.
Lemma AR2 (xm : XM) P Q w : cAR R P Q w -> pAR R P Q w.
Proof.
move => H. apply: (dn xm) => C. apply: cAR_cEU H.
apply: EU2. exact: dmpAR.
Qed.
End Paths2.
Proof.
move => H.
pose R' x y := R x y /\ (cER R P Q x -> ~ P x -> cER R P Q y).
have R'_serial x : exists y, R' x y.
case: (xm (cER R P Q x)); case: (xm (P x)); try by case: (R_serial x) => y; exists y.
move => nPx [//|y]. by exists y.
case: (dc _ R'_serial w) => f f0 pf.
exists f. split => //; first by move => n; apply pf.
suff S n : cER R P Q (f n) \/ (exists2 k : nat, k < n & P (f k)).
move => n. case (S n);[ case; tauto|tauto].
elim: n => [|n [IHn|IHn]]; first by rewrite f0; tauto.
- case: (xm (P (f n))) => HP; [right; by exists n|left].
case: (pf n) => _. by apply.
- right. case: IHn => k ? ?. exists k => //. exact: ltnW.
Qed.
End Paths.
Section Paths2.
Variables (X : Type) (R : X -> X -> Prop).
Hypothesis (R_serial : forall x, exists y, R x y).
Lemma AU2 (xm : XM) (dc : DC_ X) P Q w : pAU R P Q w -> cAU R P Q w.
Proof.
move => H. apply: (dn xm) => C.
apply (dmAU xm) in C. apply (ER1 R_serial xm dc) in C.
move: H. exact: pAU_pER.
Qed.
Lemma ER2 (xm : XM) P Q w : pER R P Q w -> cER R P Q w.
Proof.
move => H. apply: (dn xm) => C.
have H' : pER R (PredC (PredC P)) (PredC (PredC Q)) w.
apply: pER_strengthen H => v; by firstorder.
apply pAU_pER in H'.
apply: H'. apply: AU1. apply: (dn xm) => C'. apply (dmAU xm) in C'.
apply: C. apply: ER_strengthen C' => ?; exact: (dn xm).
Qed.
Lemma AR1 (xm : XM) (dc : DC_ X) P Q w : pAR R P Q w -> cAR R P Q w.
Proof.
move => H. apply: (dn xm) => C.
apply (dmAR xm) in C. apply (EU1 R_serial dc) in C.
exact: pAR_pEU H.
Qed.
Lemma AR2 (xm : XM) P Q w : cAR R P Q w -> pAR R P Q w.
Proof.
move => H. apply: (dn xm) => C. apply: cAR_cEU H.
apply: EU2. exact: dmpAR.
Qed.
End Paths2.
Section Soundness.
Variables (xm : XM) (dc : DC).
Lemma sts_agreement (M:sts) (w :M) s : eval s w <-> satisfies s w.
Proof.
elim: s w => //= [s IHs t IH|s IHs|s IHs t IH|s IHs t IH] w.
- firstorder.
- firstorder.
- split => H.
+ apply: (AR2 xm). apply: AR_strengthen H => *; by firstorder.
+ apply: (AR1 (@serial M) xm (@dc M)). apply: pAR_strengthen H => *; by firstorder.
- split => H.
+ apply: AU1. apply: AU_strengthen H => *; by firstorder.
+ apply: (AU2 (@serial M) xm (@dc M)). apply: pAU_strengthen H => *; by firstorder.
Qed.
Lemma sts_path_soundness s : prv s -> forall (M : sts) (w : M), satisfies s w.
Proof.
move => H M w.
have modelP : ldec (@eval M) by move => *; exact: xm.
set M' := CModel modelP. apply/sts_agreement. exact: (@soundness _ H M').
Qed.
End Soundness.
Lemma XM_required :
(forall s, prv s -> forall (M : sts) (w : M), satisfies s w) -> XM.
Proof.
move => snd.
suff S : (forall P, ~ ~ P -> P).
move => P. apply: S => C. apply: (C). right => p. apply C. by left.
move => P.
pose L (p : var) (w :unit) := P.
pose R (w v : unit) := True.
have ser x : exists y, R x y. by exists tt.
pose M := STS L ser.
exact: (@snd _ (axDN (fV 0)) M tt).
Qed.
Lemma prv_ER : prv (ER fF (fF ---> fF)).
Proof.
rewrite /ER. apply: AU_ind. Intro. Apply. drop. exact: axI.
Intro. drop. exact: ax_serial.
Qed.
Lemma DC_required :
(forall s, prv s -> forall (M : sts) (w : M), satisfies s w) -> DC.
Proof.
move => snd X R ser_R x.
have xm : XM by exact: XM_required.
pose M := STS (fun _ _ => False) ser_R.
move: (snd _ prv_ER M x). case/(dmAll xm) => pi H. rewrite-/satisfies in H.
apply (nImp xm) in H. destruct H as [p1 H].
apply (nImp xm) in H. destruct H as [p2 _].
by exists pi.
Qed.
Agreement with Disjunctive Release implies LPO
Definition p_release' X (p q : X -> Prop) pi :=
(forall n, q (pi n)) \/ (exists2 n, p (pi n) & forall m, m < n -> q (pi m)).
Definition pAR' X (R : X -> X -> Prop) (p q : X -> Prop) (w : X) : Prop :=
forall pi, path R pi -> pi 0 = w -> p_release' p q pi.
Definition R3 (m n : 'I_3) : bool :=
match m : nat, n : nat with
| 0,0 => true
| 0,1 => true
| 1,2 => true
| 2,2 => true
| _,_ => false
end.
Lemma ser_R3 : forall w, exists v, R3 w v.
Proof. case => [[|[|[|n]]]] // i; by [exists ord0| exists (Ordinal (erefl (2 < 3)))]. Qed.
Definition L3 p (w : 'I_3) :=
match p with
| 0 => w == 1 :> nat
| 1 => w < 2
| _ => false
end.
Definition M3 := FModel L3 ser_R3.
Lemma AR3_0 : cAR (@trans M3) (eval (fV 0)) (eval (fV 1)) ord0.
Proof.
cofix AR3_0. apply: ARs; first done.
case. case => [|[|n]] i.
- suff ->: Ordinal i = ord0. move => _. exact: AR3_0.
congr Ordinal. exact: eq_irrelevance.
- move => _. apply: AR0 => //.
- move => H. case: notF. exact: contraTT H.
Qed.
Section LPO.
Hypothesis hyp_AR : forall (M : fmodel) (w : M) (s t : form),
cAR (@trans M) (eval s) (eval t) w -> pAR' (@trans M) (satisfies s) (satisfies t) w.
Variable f : nat -> bool.
Definition pi3 (n : nat) : 'I_3 :=
match n with
| 0 => ord0
| n.+1 => if [exists m : 'I_n, f m] then Ordinal (erefl (2 < 3)) else
if f n then Ordinal (erefl (1 < 3)) else ord0
end.
Lemma path_pi3 : path R3 pi3.
Proof.
case => [|n] ; rewrite /pi3 /R3 /=.
- case e : (f 0); case : (ifP _) => //=; case/existsP; by case.
- case e : (f n) => //=.
+ have -> /= : [exists m : 'I_n.+1, f m]. apply/existsP. by exists ord_max.
by case: (ifP _).
- case: (ifP _) => //=.
+ case/existsP => m fm.
suff -> : [exists m : 'I_n.+1, f m] by [].
apply/existsP. exists (inord m). by rewrite inordK // ltnW // ltnS ltn_ord.
+ move => H. case: (ifP _) => //; last by case: (ifP _).
case/existsP => m fm /=. apply: contraFT H => _. apply/existsP.
suff On : m < n by exists (Ordinal On).
rewrite ltn_neqAle -ltnS ltn_ord andbT. apply: contraTneq fm => ->.
by rewrite e.
Qed.
Lemma LPO_of_disjunctive_AR : (forall n, f n = false) \/ exists n, f n = true.
Proof.
case: (hyp_AR AR3_0 path_pi3 (erefl _)) => H; [left|right].
- move => n. apply: contraTF (H n.+3) => Hn.
rewrite /= (_ : [exists m : 'I_n.+2, f m] = true) //=.
apply/existsP. have On : n < n.+2 by done. by exists (Ordinal On).
- case: H => [[|n]] //=. do 2 (case: (ifP _) => //=). by exists n.
Qed.
End LPO.