Require Import Omega.
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp Require Import all_ssreflect.
From libs Require Import edone bcase fset base modular_hilbert sltype.
Require Import CTL_def dags demo hilbert relaxed_pruning.
Import IC.
Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.
Implicit Types (C D L : clause) (S : {fset clause}).
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp Require Import all_ssreflect.
From libs Require Import edone bcase fset base modular_hilbert sltype.
Require Import CTL_def dags demo hilbert relaxed_pruning.
Import IC.
Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.
Implicit Types (C D L : clause) (S : {fset clause}).
Section RefPred.
Variable (F : {fset sform}).
Hypothesis (sfc_F : sf_closed F).
Local Notation S0 := (S0 F).
Local Notation U := (U F).
Local Notation xaf := (fun L => [af L]).
Definition href C := prv ([af C] ---> Bot).
Lemma refI1n s C : prv ([af C] ---> s) -> href (s^- |` C).
Proof.
move => H. rewrite /href. rewrite -> andU,H,bigA1,axAC.
rule axAcase. exact: axContra.
Qed.
Lemma refE1n s C : href (s^- |` C) -> prv ([af C] ---> s).
Proof.
move => H. rewrite /href in H. rewrite -> andU,bigA1 in H.
Intro. ApplyH axDN. Intro. ApplyH H. by ApplyH axAI.
Qed.
Ltac Lbase_aux := move => D; rewrite !inE; (try case/orP) =>/eqP->.
Ltac Lbase1 := Lbase_aux; by rewrite /= ?fsubUset ?fsub1 ?powersetE ?fsubUset ?fsub1 ?inE ?ssub_refl.
Ltac Lbase3 := Lbase_aux; rewrite /weight /= ?fsumU !fsum1 /= /sltype.f_weight /= -?(plusE,minusE);
apply/leP; omega.
Ltac Lbase4 := move => L; Lbase_aux; by rewrite /sltype.supp /= ?suppCU ?suppC1 /=; bcase.
The lemma below is simple but tedious to prove. The recursive structure is
provided in sltype.v (Lemma supp_aux) such that it can be shared between
all formula types for which Hilbert system and support have been defined.
Lemma base0P C : C \in U ->
prv ([af C] ---> \or_(L <- base [fset D in U | literalC D] C) [af L]).
Proof with try solve [Lbase1|Lbase3|Lbase4].
apply: (@supp_aux _ ssub) => /= {C} ; last by move => ?; exact: sf_ssub.
- move => [[|p|s t|s|s t|s t] [|]] //=; try exact: decomp_lit.
- apply: (decomp_ab (S0 := [fset [fset s^-]; [fset t^+]]))...
+ simpl. rewrite -[fImp s t]/(s ---> t). rewrite -> (axIO s t).
rule axOE.
* rewrite -> af1n. apply: (bigOI xaf). by rewrite !inE eqxx.
* rewrite -> (af1p t) at 1. apply: (bigOI xaf). by rewrite !inE eqxx.
- apply: (decomp_ab (S0 := [fset [fset s^+; t^-]]))...
+ rewrite -[interp _]/(~~: (s ---> t)). rewrite -> dmI.
rewrite -> (af1p s),(af1n t), <- andU at 1.
apply: (bigOI xaf). by rewrite inE.
- apply: (decomp_ab (S0 := [fset [fset t^+; fAX (fAR s t)^+]; [fset t^+;s^+]]))...
+ simpl. rewrite -> axAReq,axAODr at 1. rule axOE.
* rewrite -> (af1p t),(af1p s),<- andU at 1.
apply: (bigOI xaf). by rewrite !inE eqxx.
* rewrite -> (af1p t),(af1p (AX (AR s t))),<- andU at 1.
apply: (bigOI xaf). by rewrite !inE eqxx.
- apply: (decomp_ab (S0 := [fset [fset s^-; fAX (fAR s t)^-]; [fset t^-]]))...
+ rewrite -[interp _]/(~~: AR s t). rewrite -> dmAR,axEUeq at 1. rule axOE.
* rewrite -> (af1n t). apply: (bigOI xaf). by rewrite !inE eqxx.
* rewrite <- dmAR, <- dmAX. rewrite -> (af1n s), (af1n (AX (AR s t))), <- andU at 1.
apply: (bigOI xaf). by rewrite !inE eqxx.
- apply: (decomp_ab (S0 := [fset [fset s^+; fAX (fAU s t)^+]; [fset t^+]]))...
+ simpl. rewrite -> axAUeq at 1. rule axOE.
* rewrite -> (af1p t) at 1. apply: (bigOI xaf). by rewrite !inE eqxx.
* rewrite -> (af1p s),(af1p (AX (AU s t))),<- andU at 1.
apply: (bigOI xaf). by rewrite !inE eqxx.
- apply: (decomp_ab (S0 := [fset [fset t^-; fAX (fAU s t)^-]; [fset t^-;s^-]]))...
+ rewrite -[interp _]/(~~: AU s t). rewrite -> dmAU, axERu, axAODr.
rewrite <- dmAU, <- dmAX. rewrite /=. rule axOE.
* rewrite -> af1n, af1n, <- andU. apply: (bigOI xaf). by rewrite !inE eqxx.
* rewrite -> af1n, af1n, <- andU. apply: (bigOI xaf). by rewrite !inE eqxx.
Qed.
Lemma ax_lcons C : ~~ lcons C -> prv ([af C] ---> Bot).
Proof.
rewrite negb_and -has_predC negbK.
case/orP => [inC|/hasP [[[] //= p [|] //]]].
- rewrite -> (bigAE _ inC). exact: axI.
- rewrite negbK => pP pN.
rewrite -> (axA2 [af C]). rewrite -> (bigAE _ pP) at 2.
rewrite -> (bigAE _ pN). simpl. rule axAcase. exact: axI.
Qed.
Lemma ax_Req C L : C \in Req L -> prv ([af L] ---> EX [af C]).
Proof.
rewrite !inE. case/predU1P => [->|].
- rewrite -> box_request. do 2 Intro. ApplyH ax_serial. Rev.
ApplyH axN. Rev. apply: rNorm. exact: axContra.
- case/fimsetP => s. rewrite inE.
move: s => [[|?|? ?|s|? ?|? ?] [|]] /andP [//=] inL _ ->.
rewrite -> andU,(axA2 [af L]). rewrite <- af1n.
rewrite -> (bigAE _ inL),box_request at 1.
rewrite /=. rule axAcase. rewrite <- (axDN s) at 1. exact: axDBD.
Qed.
Lemma ax_ReqR C D : D \in Req C -> href D -> href C.
Proof. move/ax_Req => H rD. rewrite /href in rD *. rewrite -> H, rD. exact: axDF. Qed.
Section EventualityRefutations.
Variable S : {fset clause}.
Hypothesis sub_S : S `<=` S0.
Hypothesis coref_S : coref F href S.
Lemma baseP C : C \in U ->
prv ([af C] ---> \or_(L <- base S C) [af L]).
Proof.
move => inU. rewrite -> base0P => //.
apply: bigOE => L /sepP [/sepP [L1 L2] L3].
case: (boolP (L \in S)) => LS; first by apply: (bigOI xaf); rewrite inE LS.
case: (boolP (lcons L)) => LL; last by rewrite -> (ax_lcons LL); exact: axBE.
have H : L \in S0 `\` S by rewrite !inE LS L1 L2.
Intro. ApplyH axBE. Rev. exact: (coref_S H).
Qed.
Lemma coref_supp C : C \in U -> ~~ suppS S C -> href C.
Proof.
move => inU sD. rewrite /href. rewrite -> baseP => //. apply: bigOE => D.
case/sepP => D1 D2. apply: contraN sD. by apply/hasP; exists D.
Qed.
Lemma unfulfilledAU_refute s t L : L \in S -> (fAX (fAU s t)^+ \in L) ->
~~ fulfillsAU S S0 s t L -> mprv ([af L] ---> Bot).
Proof.
move => H1 H2 H3.
pose I : {fset clause} := [fset X in S | ~~ fulfillsAU S S0 s t X].
pose u : form := \or_(D <- I) [af D].
rewrite /= in I u.
suff sf : prv (u ---> ~~: fAX (fAU s t)).
{ Intro. ApplyH sf; Rev.
- apply: (bigOI xaf). by rewrite inE H1.
- rewrite ->(bigAE _ H2). exact: axI. }
have HI C : C \in I -> exists2 D : clause,
D \in Req C & base S (s^+ |` D) `<=` I /\ ~~ suppS S (t^+ |` D).
{ rewrite inE => /andP [L1' L3'].
rewrite /fulfillsAU fulfillsAUE inE (subP sub_S _ L1') /= in L3'.
case/allPn : L3' => D DReq.
rewrite negb_or => /andP [HS /hasPn HS'].
exists D => //. split => //. apply/subP => X.
rewrite !inE => /andP [inS sXC].
move: (HS' _ (subP sub_S _ inS)). by rewrite inS sXC. }
rewrite -> (axDNI (fAU s t)), dmAU. apply: EXR_ind.
apply: bigOE => X XinD.
case: (HI _ XinD) => C inReq [base1 base2].
have XinU : X \in U. apply: (SsubU sub_S). by case/sepP : XinD.
move/(subP sub_S) : H1. rewrite inE => /and3P [H1 _ _].
rewrite -> (ax_Req inReq). apply: rEXn. ApplyH axAI.
- have inU : t^+ |` C \in U.
rewrite powersetU (ReqU sfc_F XinU inReq) powersetE fsub1 andbT.
apply: Fsub H2 H1 => //. by rewrite /= !inE ssub_refl.
apply: rAIL. rewrite -> (af1p t), <- andU, fsetUC. exact: coref_supp.
- rewrite {1}/Or. apply: rAIL. rewrite -> modular_hilbert.axDN, (af1p s), <- andU, fsetUC.
rewrite -> baseP. apply: or_sub. exact/subP.
rewrite powersetU (ReqU sfc_F XinU inReq) powersetE fsub1 /= andbT.
apply: Fsub H2 H1 => //. by rewrite /= !inE ssub_refl.
Qed.
Lemma unfulfilledAR_refute s t C : C \in S -> fAX (fAR s t)^- \in C ->
~~ fulfillsAR S S0 s t C -> prv ([af C] ---> Bot).
Proof.
move: C => C0 H1 H2 H3.
have inF : fAX (fAR s t)^- \in F.
apply: Fsub (ssub_refl _) H2 _ => //. move/(subP sub_S) : H1. by case/sepP.
pose I : {fset clause} := [fset D in S | ~~ fulfillsAR S S0 s t D].
pose u : form := \or_(D<-I) [af D].
rewrite /= in I u.
have C0u: prv ([af C0] ---> u) by apply: (bigOI xaf); rewrite inE H1.
have C0x: prv ([af C0] ---> ~~: AX (AR s t)) by rewrite -> (bigAE _ H2); exact: axI.
suff sf: prv (u ---> fAX (fAR s t)) by Intro; ApplyH C0x; ApplyH sf; ApplyH C0u.
have I1 C : C \in I -> (exists2 D : clause, D \in Req C & ~~ suppS S D)
\/ base S (s^- |` R C) `<=` I /\ ~~ suppS S (t^- |` R C).
{ rewrite inE => /andP [HL1 HL3].
rewrite /fulfillsAR fulfillsARE inE !negb_and negb_or (subP sub_S _ HL1) /= in HL3.
case/orP : HL3 => [L1|/andP[L1 L2]];[left;exact/allPn|right].
split => //. apply/subP => X /sepP. rewrite !inE suppCU suppC1 => [[inS] /andP [sX sR]].
rewrite inS /=. apply: contraNN L2 => rnk. apply/hasP; exists X => //.
+ exact: (subP sub_S).
+ by rewrite !suppCU !suppC1 !sX sR. }
apply: AXR_ind. apply: bigOE => L LinD.
have LinU : L \in U. apply: (SsubU sub_S). move: L LinD. apply/subP. exact: subsep.
move/I1 : (LinD) => [[E E1 E2]|[L1 L2]].
- suff W: prv ([af L] ---> Bot) by rewrite -> W; exact: axBE.
apply: ax_ReqR (E1) _. apply: coref_supp E2. exact: ReqU E1.
- rewrite -> box_request. apply: rNorm. apply: rAI.
+ apply: refE1n. apply: coref_supp => //.
rewrite powersetU RinU // andbT powersetE fsub1. by case/and3P :(sfc_F (sfc_F inF)).
+ rewrite /Or. apply: rAIL => /=. rewrite -> af1n, <- andU. rewrite fsetUC.
rewrite -> baseP; first (apply: or_sub; exact/subP).
rewrite powersetU RinU // andbT powersetE fsub1. by case/and3P :(sfc_F (sfc_F inF)).
Qed.
End EventualityRefutations.
Lemma href_translation C : ref F C -> href C.
Proof.
elim => {C}; eauto using coref_supp,ax_ReqR.
- move => S C sub0 _ coS inS. case/hasP => [[[]//[]// s t [|] //]] inC.
exact: unfulfilledAR_refute.
- move => S C sub0 _ coS inS. case/hasP => [[[]//[]// s t [|] //]] inC.
exact: unfulfilledAU_refute.
Qed.
End RefPred.
Theorem informative_completeness s :
( prv (~~: s) )
+ (exists2 M : fmodel, #|M| <= f_size s * 2^(4 * f_size s + 2) & exists (w:M), eval s w).
Proof.
pose F := ssub (s^+).
have sfc_F := @sfc_ssub (s^+).
have inU : [fset s^+] \in U F by rewrite powersetE fsub1 ssub_refl.
case (ref_compl sfc_F (ssub_refl _) inU) => H;[left|right].
- move/(href_translation sfc_F) : H. rewrite /href. by rewrite <- af1p.
- move: H => [M M1 [w Hw]]. exists M; last by exists w; apply: (Hw _ (fset11 _)).
apply: leq_trans M1 _. rewrite addn2 expnS mulnA [_*2]mulnC leq_mul ?size_ssub //.
by rewrite leq_exp2l // addn1 ltnS -[4]/(2*2) -mulnA leq_mul2l size_ssub.
Qed.
Corollary fin_completeness s : (forall (M:fmodel) (w:M), eval s w) -> prv s.
Proof.
move => valid_s.
case: (informative_completeness (~~: s)) => [|[M] _ [w] /=];
[by rewrite -> modular_hilbert.axDN|by firstorder].
Qed.
Corollary prv_dec s : decidable (prv s).
Proof.
case: (informative_completeness (~~: s)) => H;[left|right].
- by rule axDN.
- move => prv_s. case: H => M _ [w]. apply. exact: (@soundness _ prv_s M).
Qed.
Corollary sat_dec s : decidable (exists (M:cmodel) (w:M), eval s w).
Proof.
case: (informative_completeness s) => H;[right|left].
- case => M [w] Hw. exact: (@soundness _ H M).
- case: H => M _ [w] ?. by exists M; exists w.
Qed.
Corollary valid_dec s : decidable (forall (M:cmodel) (w:M), eval s w).
Proof.
case (sat_dec (fImp s fF)) => /= H;[by firstorder|left => M w].
by case (modelP s w); firstorder.
Qed.
Corollary small_models s :
(exists (M:cmodel) (w:M), eval s w) ->
(exists2 M : fmodel, #|M| <= f_size s * 2^(4 * f_size s + 2) & exists (w:M), eval s w).
Proof.
move => [M] [w] w_s. case: (informative_completeness s) => //. by move/soundness/(_ M w w_s).
Qed.