Require Import Relations Omega.
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp Require Import all_ssreflect.
From libs Require Import edone bcase fset base modular_hilbert sltype.
Require Import Kstar_def demo.
Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.
Implicit Types (C D : clause).
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp Require Import all_ssreflect.
From libs Require Import edone bcase fset base modular_hilbert sltype.
Require Import Kstar_def demo.
Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.
Implicit Types (C D : clause).
Section RefPred.
Variable (F : {fset sform}).
Hypothesis (sfc_F : sf_closed F).
Local Notation S0 := (S0 F).
Local Notation U := (U F).
Local Notation xaf := (fun C => [af C]).
Definition ref C := prv ([af C] ---> Bot).
Lemma refI1n s C : prv ([af C] ---> s) -> ref (s^- |` C).
Proof.
move => H. rewrite /ref. rewrite -> andU,H,bigA1,axAC.
rule axAcase. exact: axContra.
Qed.
Lemma refE1n s C : ref (s^- |` C) -> prv ([af C] ---> s).
Proof.
move => H. rewrite /ref in H. rewrite -> andU,bigA1 in H.
Intro. ApplyH axDN. Intro. ApplyH H. by ApplyH axAI.
Qed.
Definition base0 C := [fset L in U | literalC L && suppC L C].
Ltac Lbase_aux := move => D; rewrite !inE; (try case/orP) =>/eqP->.
Ltac Lbase1 := Lbase_aux; by rewrite /= ?fsubUset ?fsub1 ?powersetE ?fsubUset ?fsub1 ?inE ?ssub_refl.
Ltac Lbase3 := Lbase_aux; rewrite /weight /= ?fsumU !fsum1 /= /sltype.f_weight /= -?(plusE,minusE); apply/leP; omega.
Ltac Lbase4 := move => L; Lbase_aux; by rewrite /sltype.supp /= ?suppCU ?suppC1 /=; bcase.
Lemma base0P C : C \in U ->
prv ([af C] ---> \or_(L <- base [fset D in U | literalC D] C) [af L]).
Proof with try solve [Lbase1|Lbase3|Lbase4].
apply: (@supp_aux _ ssub) => /= {C} ; last by move => ?; exact: sf_ssub.
- move => [[|p|s t|s|s] [|]] //=; try exact: decomp_lit.
+ apply: (decomp_ab (S0 := [fset [fset s^-]; [fset t^+]])) => /=...
rewrite -[fImp s t]/(s ---> t). rewrite -> (axIO s t).
rule axOE.
* rewrite -> af1n. apply: (bigOI xaf). by rewrite !inE eqxx.
* rewrite -> (af1p t) at 1. apply: (bigOI xaf). by rewrite !inE eqxx.
+ apply: (decomp_ab (S0 := [fset [fset s^+; t^-]])) => /=...
rewrite -[fImp s t]/(s ---> t). rewrite -> dmI.
rewrite -> (af1p s),(af1n t), <- andU at 1.
apply: (bigOI xaf). by rewrite inE.
+ apply: (decomp_ab (S0 := [fset [fset s^+;fAX (fAG s)^+]] )) => /=...
rewrite -> axAGE at 1. rewrite -> (af1p s),(af1p (AX (AG s))), <- andU at 1.
apply: (bigOI xaf). by rewrite !inE.
+ apply: (decomp_ab (S0 := [fset [fset s^-]; [fset fAX (fAG s)^-]] )) => /=...
rewrite -> axAGEn. rewrite -> (af1n s),(af1n (AX (AG s))) at 1.
rule axOE; apply: (bigOI xaf); by rewrite !inE eqxx.
Qed.
Lemma ax_lcons C : ~~ lcons C -> prv ([af C] ---> Bot).
Proof.
rewrite negb_and -has_predC negbK.
case/orP => [inC|/hasP [[[] //= p [|] //]]].
- rewrite -> (bigAE _ inC). exact: axI.
- rewrite negbK => pP pN.
rewrite -> (axA2 [af C]). rewrite -> (bigAE _ pP) at 2.
rewrite -> (bigAE _ pN). simpl. rule axAcase. exact: axI.
Qed.
Lemma R2 C s : ref (s^- |` R C) -> ref (fAX s^- |` C).
Proof.
rewrite /ref. do 2 rewrite -> andU,bigA1.
rewrite -[_ (s^-)]/(~~: s) -[_ (fAX s^-)]/(~~: AX s) => H.
rewrite -> dmAX,box_request.
rewrite /=. rewrite <- axDF. rewrite <- H.
rule axAcase. apply axDBD.
Qed.
Section ContextRefutations.
Variable S : {fset clause}.
Hypothesis sub_S : S `<=` S0.
Hypothesis coref_S : coref F ref S.
Lemma baseP C : C \in U ->
prv ([af C] ---> \or_(D <- base S C) [af D]).
Proof.
move => inU. rewrite -> base0P => //.
apply: bigOE => L. rewrite !inE andbC => /and3P [L1 L2 L3].
case: (boolP (L \in S)) => LS; first by apply: (bigOI xaf); rewrite inE LS.
case: (boolP (lcons L)) => LL; last by rewrite -> (ax_lcons LL); exact: axBE.
have H : L \in S0 `\` S by rewrite !inE LS LL L2 L3.
Intro. ApplyH axBE. Rev. exact: (coref_S H).
Qed.
Lemma R1 C : C \in U -> ~~ suppS S C -> ref C.
Proof.
rewrite /ref => H1 H2. rewrite -> baseP => //.
apply: bigOE => D. rewrite inE => /andP [D1 D2]. case:notF.
apply: contraNT H2 => _. by apply/hasP; exists D.
Qed.
Lemma R3 C s : C \in S -> fAX (fAG s)^- \in C -> ~ fulfillAG S s C -> ref C.
Proof.
move => CinS inC nsupp_s. rewrite (fset1U inC). apply: refI1n.
pose I := [fset D in S | D \notin fulfillAGb s S].
pose u := \or_(D <- I) [af D].
have IP D : D \in I -> ~~ suppS S (s^- |` R D) /\ {subset base S (R D) <= I}.
case/sepP => inS. rewrite fulfillAGE inE inS /= => /hasPn H. split.
+ apply/hasPn => D' inS'. move: (H _ inS'). rewrite suppCU suppC1 /rtrans.
by apply contraNN => /andP [-> ->].
+ move => D' /sepP [D1 D2]. rewrite inE D1 /=. move: (H _ D1).
rewrite /rtrans D2 /= negb_or. by case/andP.
Cut u; first by apply: (bigOI xaf); rewrite inE CinS /=; apply/negP => /fulfillAGP; tauto.
apply: rAGp_ind. apply: bigOE => D inI.
rewrite -> box_request. apply: rNorm.
have HR : R D \in U.
rewrite RinU //. rewrite inE in inI. case/andP : inI => /(subP sub_S) H _.
rewrite inE /U in H. by case/and3P: H.
ApplyH axAI.
- rewrite -> baseP => //. apply: or_sub. by apply IP.
- apply: refE1n. apply: R1; last by apply IP.
rewrite powersetU HR powersetE fsub1 andbT.
move/(subP sub_S) : CinS. rewrite inE => /and3P [X _ _].
rewrite powersetE in X. move/(subP X) : inC.
move => /sfc_F /= /sfc_F /=. by case/andP => _ ->.
Qed.
End ContextRefutations.
Theorem href_of C : demo.ref F C -> ref C.
Proof. elim => *;[ apply: R1 | apply: R2 | apply: R3]; eassumption. Qed.
End RefPred.
Lemma prf_ref_sound C : prv ([af C] ---> Bot) -> ~ (exists M : fmodel, sat M C).
Proof. move => H [M] [w] X. apply satA in X. exact: finite_soundness H M w X. Qed.
Theorem informative_completeness s :
prv (fImp s fF)
+ (exists2 M:fmodel, #|M| <= 2^(2 * f_size s) & exists w:M, eval s w).
Proof.
set F := ssub (s^+). have ? := @sfc_ssub (s^+).
case: (@pruning_completeness F _ [fset s^+]) => //.
- by rewrite powersetE fsub1 ssub_refl.
- move => /href_of H. left. rewrite /ref in H. rewrite <- af1p in H. exact: H.
- move => H. right. move: H => [M] [w] /(_ (s^+) (fset11 _)) /= ? S.
exists M; last by exists w.
apply: leq_trans S _. by rewrite leq_exp2l ?size_ssub.
Qed.
Corollary prv_dec s : decidable (prv s).
Proof.
case: (informative_completeness (~~: s)) => H;[left|right].
- by rule axDN.
- move => prv_s. case: H => M _ [w]. apply. exact: (@soundness _ prv_s M).
Qed.
Corollary sat_dec s : decidable (exists (M:cmodel) (w:M), eval s w).
Proof.
case: (informative_completeness s) => H;[right|left].
- case => M [w] Hw. exact: (@soundness _ H M).
- case: H => M _ [w] ?. by exists M; exists w.
Qed.
Corollary valid_dec s : decidable (forall (M:cmodel) (w:M), eval s w).
Proof.
case (sat_dec (fImp s fF)) => /= H;[by firstorder|left => M w].
by case (modelP s w); firstorder.
Qed.