Require Export Utils.headers.axioms.
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
match p with eq_refl => eq_refl end.
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
match q with eq_refl => match p with eq_refl => eq_refl end end.
Definition None := 0.
Definition Some := S.
Notation fin := nat.
Definition shift := S.
Definition var_zero := 0.
Definition id {X} (x: X) := x.
Definition scons {X: Type} (x : X) (xi : nat -> X) :=
fun n => match n with
|0 => x
|S n => xi n
end.
Notation "s .: sigma" := (scons s sigma) (at level 70).
Definition funcomp {X Y Z} (g : Y -> Z) (f : X -> Y) :=
fun x => g (f x).
Class Ren1 (X1 : Type) (Y Z : Type) :=
ren1 : X1 -> Y -> Z.
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
ren2 : X1 -> X2 -> Y -> Z.
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
ren3 : X1 -> X2 -> X3 -> Y -> Z.
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Declare Scope fscope.
Declare Scope subst_scope.
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
Class Subst1 (X1 : Type) (Y Z: Type) :=
subst1 : X1 -> Y -> Z.
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
subst2 : X1 -> X2 -> Y -> Z.
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
subst3 : X1 -> X2 -> X3 -> Y -> Z.
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
Notation "f >> g" := (funcomp g f) (*fun x => g (f x)*) (at level 50) : subst_scope.
Open Scope subst_scope.
A generic lifting of a renaming.
A generic proof that lifting of renamings composes.
Lemma up_ren_ren (xi: nat -> nat) (zeta : nat -> nat) (rho: nat -> nat) (E: forall x, (xi >> zeta) x = rho x) :
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
Proof.
intros [|x].
- reflexivity.
- unfold up_ren. simpl. unfold funcomp. rewrite <- E. reflexivity.
Qed.
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
Proof.
intros [|x].
- reflexivity.
- unfold up_ren. simpl. unfold funcomp. rewrite <- E. reflexivity.
Qed.
Eta laws.
Lemma scons_eta_id {n : nat} : var_zero .: shift = id :> (nat -> nat).
Proof. fext. intros [|x]; reflexivity. Qed.
Lemma scons_eta {T} (f : nat -> T) :
f var_zero .: shift >> f = f.
Proof. fext. intros [|x]; reflexivity. Qed.
Lemma scons_comp (T: Type) U (s: T) (sigma: nat -> T) (tau: T -> U ) :
(s .: sigma) >> tau = scons (tau s) (sigma >> tau) .
Proof.
fext. intros [|x]; reflexivity.
Qed.
Proof. fext. intros [|x]; reflexivity. Qed.
Lemma scons_eta {T} (f : nat -> T) :
f var_zero .: shift >> f = f.
Proof. fext. intros [|x]; reflexivity. Qed.
Lemma scons_comp (T: Type) U (s: T) (sigma: nat -> T) (tau: T -> U ) :
(s .: sigma) >> tau = scons (tau s) (sigma >> tau) .
Proof.
fext. intros [|x]; reflexivity.
Qed.
Ltac fsimpl :=
unfold up_ren; repeat match goal with
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
| [|- context [id ?s]] => change (id s) with s
| [|- context[(?f >> ?g) >> ?h]] =>
change ((?f >> ?g) >> ?h) with (f >> (g >> h)) (* AsimplComp *)
| [|- context[(?s.:?sigma) var_zero]] => change ((s.:sigma)var_zero) with s
| [|- context[(?f >> ?g) >> ?h]] =>
change ((f >> g) >> h) with (f >> (g >> h))
| [|- context[?f >> (?x .: ?g)]] =>
change (f >> (x .: g)) with g
| [|- context[var_zero]] => change var_zero with 0
| [|- context[?x2 .: shift >> ?f]] =>
change x2 with (f 0); rewrite (@scons_eta _ _ f)
| [|- context[(?v .: ?g) 0]] =>
change ((v .: g) 0) with v
| [|- context[(?v .: ?g) (S ?n)]] =>
change ((v .: g) (S n)) with (g n)
| [|- context[?f 0 .: ?g]] =>
change g with (shift >> f); rewrite scons_eta
| _ => first [progress (rewrite ?scons_comp) | progress (rewrite ?scons_eta_id)]
end.
unfold up_ren; repeat match goal with
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
| [|- context [id ?s]] => change (id s) with s
| [|- context[(?f >> ?g) >> ?h]] =>
change ((?f >> ?g) >> ?h) with (f >> (g >> h)) (* AsimplComp *)
| [|- context[(?s.:?sigma) var_zero]] => change ((s.:sigma)var_zero) with s
| [|- context[(?f >> ?g) >> ?h]] =>
change ((f >> g) >> h) with (f >> (g >> h))
| [|- context[?f >> (?x .: ?g)]] =>
change (f >> (x .: g)) with g
| [|- context[var_zero]] => change var_zero with 0
| [|- context[?x2 .: shift >> ?f]] =>
change x2 with (f 0); rewrite (@scons_eta _ _ f)
| [|- context[(?v .: ?g) 0]] =>
change ((v .: g) 0) with v
| [|- context[(?v .: ?g) (S ?n)]] =>
change ((v .: g) (S n)) with (g n)
| [|- context[?f 0 .: ?g]] =>
change g with (shift >> f); rewrite scons_eta
| _ => first [progress (rewrite ?scons_comp) | progress (rewrite ?scons_eta_id)]
end.
Generic fsimpl tactic: simplifies the above primitives in the context
Ltac fsimplc :=
unfold up_ren; repeat match goal with
| [H : context[id >> ?f] |- _] => change (id >> f) with f in H(* AsimplCompIdL *)
| [H: context[?f >> id] |- _] => change (f >> id) with f in H(* AsimplCompIdR *)
| [H: context [id ?s] |- _] => change (id s) with s in H
| [H: context[(?f >> ?g) >> ?h] |- _] =>
change ((?f >> ?g) >> ?h) with (f >> (g >> h)) in H(* AsimplComp *)
| [H : context[(?s.:?sigma) var_zero] |- _] => change ((s.:sigma)var_zero) with s in H
| [H: context[(?f >> ?g) >> ?h] |- _] =>
change ((f >> g) >> h) with (f >> (g >> h)) in H
| [H: context[?f >> (?x .: ?g)] |- _] =>
change (f >> (x .: g)) with g in H
| [H: context[var_zero] |- _] => change var_zero with 0 in H
| [H: context[?x2 .: shift >> ?f] |- _] =>
change x2 with (f 0) in H; rewrite (@scons_eta _ _ f) in H
| [H: context[(?v .: ?g) 0] |- _] =>
change ((v .: g) 0) with v in H
| [H: context[(?v .: ?g) (S ?n)] |- _] =>
change ((v .: g) (S n)) with (g n) in H
| [H: context[?f 0 .: ?g] |- _] =>
change g with (shift >> f); rewrite scons_eta in H
| _ => first [progress (rewrite ?scons_comp in *) | progress (rewrite ?scons_eta_id in *) ]
end.
unfold up_ren; repeat match goal with
| [H : context[id >> ?f] |- _] => change (id >> f) with f in H(* AsimplCompIdL *)
| [H: context[?f >> id] |- _] => change (f >> id) with f in H(* AsimplCompIdR *)
| [H: context [id ?s] |- _] => change (id s) with s in H
| [H: context[(?f >> ?g) >> ?h] |- _] =>
change ((?f >> ?g) >> ?h) with (f >> (g >> h)) in H(* AsimplComp *)
| [H : context[(?s.:?sigma) var_zero] |- _] => change ((s.:sigma)var_zero) with s in H
| [H: context[(?f >> ?g) >> ?h] |- _] =>
change ((f >> g) >> h) with (f >> (g >> h)) in H
| [H: context[?f >> (?x .: ?g)] |- _] =>
change (f >> (x .: g)) with g in H
| [H: context[var_zero] |- _] => change var_zero with 0 in H
| [H: context[?x2 .: shift >> ?f] |- _] =>
change x2 with (f 0) in H; rewrite (@scons_eta _ _ f) in H
| [H: context[(?v .: ?g) 0] |- _] =>
change ((v .: g) 0) with v in H
| [H: context[(?v .: ?g) (S ?n)] |- _] =>
change ((v .: g) (S n)) with (g n) in H
| [H: context[?f 0 .: ?g] |- _] =>
change g with (shift >> f); rewrite scons_eta in H
| _ => first [progress (rewrite ?scons_comp in *) | progress (rewrite ?scons_eta_id in *) ]
end.
Simplification in both the goal and the context
Tactic Notation "fsimpl" "in" "*" :=
fsimpl; fsimplc.
Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope.
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
Instance idsRen : Var nat nat := id.
Notation "↑" := (shift).
fsimpl; fsimplc.
Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope.
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
Instance idsRen : Var nat nat := id.
Notation "↑" := (shift).
Ltac auto_unfold := unfold subst1, ren1, subst2, ren2, ids; unfold Subst1, Ren1, Subst2, Ren2, Var.
Ltac unfold_funcomp := match goal with
| |- context[(?f >> ?g) ?s] => change ((f >> g) s) with (g (f s))
end.
Ltac unfold_funcomp := match goal with
| |- context[(?f >> ?g) ?s] => change ((f >> g) s) with (g (f s))
end.
Automatically does a case analysis on a natural number, useful for proofs with context renamings/context morphisms.