From FOL Require Import FullSyntax Arithmetics ProofMode.
From FOL.Incompleteness Require Import Axiomatisations sigma1 qdec utils.
From Undecidability.FOL.Utils Require Import FriedmanTranslation.
Require Import Lia.
From FOL.Incompleteness Require Import Axiomatisations sigma1 qdec utils.
From Undecidability.FOL.Utils Require Import FriedmanTranslation.
Require Import Lia.
Section Translations.
Existing Instance PA_funcs_signature.
Existing Instance PA_preds_signature.
Existing Instance full_operators.
Existing Instance falsity_on.
Lemma Σ1_convervativity' {pei: peirce} (ϕ: form):
Σ1 ϕ -> bounded 0 ϕ -> Qeq ⊢C ϕ -> Qeq ⊢ ϕ.
Proof.
intros HΣ1 HB Hclass. destruct pei; first assumption.
apply Σ1_conservativity; assumption.
Qed.
Lemma peirce_to_class {pei: peirce} (ϕ: form) T:
T ⊢ ϕ -> T ⊢C ϕ.
Proof.
destruct pei; first easy. apply prv_intu_peirce.
Qed.
Lemma peirce_to_class_theory {pei: peirce} (ϕ: form) T:
T ⊢T ϕ -> T ⊢TC ϕ.
Proof.
intros [L HL]. exists L. split; first easy.
now apply peirce_to_class.
Qed.
End Translations.
Existing Instance PA_funcs_signature.
Existing Instance PA_preds_signature.
Existing Instance full_operators.
Existing Instance falsity_on.
Lemma Σ1_convervativity' {pei: peirce} (ϕ: form):
Σ1 ϕ -> bounded 0 ϕ -> Qeq ⊢C ϕ -> Qeq ⊢ ϕ.
Proof.
intros HΣ1 HB Hclass. destruct pei; first assumption.
apply Σ1_conservativity; assumption.
Qed.
Lemma peirce_to_class {pei: peirce} (ϕ: form) T:
T ⊢ ϕ -> T ⊢C ϕ.
Proof.
destruct pei; first easy. apply prv_intu_peirce.
Qed.
Lemma peirce_to_class_theory {pei: peirce} (ϕ: form) T:
T ⊢T ϕ -> T ⊢TC ϕ.
Proof.
intros [L HL]. exists L. split; first easy.
now apply peirce_to_class.
Qed.
End Translations.
Section Robinson_facts.
Existing Instance PA_funcs_signature.
Existing Instance PA_preds_signature.
Existing Instance full_operators.
Existing Instance falsity_on.
Lemma Qeq_consistent {p: peirce}:
~Qeq ⊢ ⊥.
Proof.
intros HderBot. enough (FalseSat: interp_nat ⊨= ⊥).
- cbn in FalseSat. apply FalseSat. easy.
- apply Σ1_soundness. 2-3: try constructor; auto.
constructor. apply Qdec_bot.
Qed.
Lemma Qeq_generalisation {p: peirce} φ:
Qeq ⊢ φ -> Qeq ⊢ ∀ φ.
Proof.
intros Hφ. apply AllI.
now assert (List.map (subst_form ↑) Qeq = Qeq) as -> by easy.
Qed.
End Robinson_facts.
Existing Instance PA_funcs_signature.
Existing Instance PA_preds_signature.
Existing Instance full_operators.
Existing Instance falsity_on.
Lemma Qeq_consistent {p: peirce}:
~Qeq ⊢ ⊥.
Proof.
intros HderBot. enough (FalseSat: interp_nat ⊨= ⊥).
- cbn in FalseSat. apply FalseSat. easy.
- apply Σ1_soundness. 2-3: try constructor; auto.
constructor. apply Qdec_bot.
Qed.
Lemma Qeq_generalisation {p: peirce} φ:
Qeq ⊢ φ -> Qeq ⊢ ∀ φ.
Proof.
intros Hφ. apply AllI.
now assert (List.map (subst_form ↑) Qeq = Qeq) as -> by easy.
Qed.
End Robinson_facts.
Lemma subst_bound_1 {Σ_funcs : funcs_signature} {Σ_preds : preds_signature} {ops : operators} {flag : falsity_flag}
(ψ: form) (x: term) (sigma: nat -> term):
bounded 1 ψ -> ψ[x..] = ψ[x .: sigma].
Proof.
intro HBound. eapply bounded_subst; first eassumption.
intros k Hk. destruct k; first easy. lia.
Qed.
Lemma subst_bound_2 {Σ_funcs : funcs_signature} {Σ_preds : preds_signature} {ops : operators} {flag : falsity_flag}
(ψ: form) (x y: term) (sigma: nat -> term):
bounded 2 ψ -> ψ[x .: y..] = ψ[x .: y .: sigma].
Proof.
intro HBound. eapply bounded_subst; first eassumption.
intros k Hk. destruct k; first easy.
destruct k; first easy. lia.
Qed.
Inductive aand (P Q R : Prop) :=
cconj : P -> Q -> R -> aand P Q R.
Lemma form_inv {Σ_funcs : funcs_signature} {Σ_preds : preds_signature} {ops : operators} {flag : falsity_flag} phi1 phi2 :
phi1 = phi2 ->
match phi1, phi2 with
| falsity, falsity => True
| atom _ P1 args1, atom _ P2 args2 => True
| bin falsity_on o1 phi1' phi2', bin falsity_on o2 phi1'' phi2'' =>
aand (o1 = o2) (phi1' = phi1'') (phi2' = phi2'')
| bin falsity_off o1 phi1' phi2', bin falsity_off o2 phi1'' phi2'' =>
aand (o1 = o2) (phi1' = phi1'') (phi2' = phi2'')
| quant falsity_on o1 phi, quant falsity_on o2 phi' =>
o1 = o2 /\ phi = phi'
| quant falsity_off o1 phi, quant falsity_off o2 phi' =>
o1 = o2 /\ phi = phi'
| _, _ => False
end.
Proof.
intros H. destruct phi1; subst; eauto.
all: destruct b; econstructor; eauto.
Qed.
Section Formula_facts.
Existing Instance PA_funcs_signature.
Existing Instance PA_preds_signature.
Existing Instance full_operators.
Definition impl_dec {ff: falsity_flag}:
forall (φ ψ: form), {τ & ψ = τ → φ} + ({τ & ψ = τ → φ} -> False).
Proof.
intros φ ψ. destruct ψ as [| ff P ts | ff b τ χ | ff q τ].
* right. intros [τ Hτ]. congruence.
* right. intros [τ Hτ]. congruence.
* destruct b. 1-2: right; intros [τ' Hτ']; congruence.
destruct (dec_form _ _ _ _ χ φ).
+ left. exists τ. congruence.
+ right. intros [τ' Hτ']. apply n.
destruct ff; eapply form_inv in Hτ' as []; congruence.
* right. intros [τ' Hτ']. congruence.
Qed.
Lemma list_theory_provability {p: peirce} {ff: falsity_flag} A φ:
A ⊢ φ <-> list_theory A ⊢T φ.
Proof.
split; intros H.
- exists A. eauto.
- destruct H as [B [HBIncl HBderiv]]. eapply Weak; first eassumption.
eauto.
Qed.
End Formula_facts.
(ψ: form) (x: term) (sigma: nat -> term):
bounded 1 ψ -> ψ[x..] = ψ[x .: sigma].
Proof.
intro HBound. eapply bounded_subst; first eassumption.
intros k Hk. destruct k; first easy. lia.
Qed.
Lemma subst_bound_2 {Σ_funcs : funcs_signature} {Σ_preds : preds_signature} {ops : operators} {flag : falsity_flag}
(ψ: form) (x y: term) (sigma: nat -> term):
bounded 2 ψ -> ψ[x .: y..] = ψ[x .: y .: sigma].
Proof.
intro HBound. eapply bounded_subst; first eassumption.
intros k Hk. destruct k; first easy.
destruct k; first easy. lia.
Qed.
Inductive aand (P Q R : Prop) :=
cconj : P -> Q -> R -> aand P Q R.
Lemma form_inv {Σ_funcs : funcs_signature} {Σ_preds : preds_signature} {ops : operators} {flag : falsity_flag} phi1 phi2 :
phi1 = phi2 ->
match phi1, phi2 with
| falsity, falsity => True
| atom _ P1 args1, atom _ P2 args2 => True
| bin falsity_on o1 phi1' phi2', bin falsity_on o2 phi1'' phi2'' =>
aand (o1 = o2) (phi1' = phi1'') (phi2' = phi2'')
| bin falsity_off o1 phi1' phi2', bin falsity_off o2 phi1'' phi2'' =>
aand (o1 = o2) (phi1' = phi1'') (phi2' = phi2'')
| quant falsity_on o1 phi, quant falsity_on o2 phi' =>
o1 = o2 /\ phi = phi'
| quant falsity_off o1 phi, quant falsity_off o2 phi' =>
o1 = o2 /\ phi = phi'
| _, _ => False
end.
Proof.
intros H. destruct phi1; subst; eauto.
all: destruct b; econstructor; eauto.
Qed.
Section Formula_facts.
Existing Instance PA_funcs_signature.
Existing Instance PA_preds_signature.
Existing Instance full_operators.
Definition impl_dec {ff: falsity_flag}:
forall (φ ψ: form), {τ & ψ = τ → φ} + ({τ & ψ = τ → φ} -> False).
Proof.
intros φ ψ. destruct ψ as [| ff P ts | ff b τ χ | ff q τ].
* right. intros [τ Hτ]. congruence.
* right. intros [τ Hτ]. congruence.
* destruct b. 1-2: right; intros [τ' Hτ']; congruence.
destruct (dec_form _ _ _ _ χ φ).
+ left. exists τ. congruence.
+ right. intros [τ' Hτ']. apply n.
destruct ff; eapply form_inv in Hτ' as []; congruence.
* right. intros [τ' Hτ']. congruence.
Qed.
Lemma list_theory_provability {p: peirce} {ff: falsity_flag} A φ:
A ⊢ φ <-> list_theory A ⊢T φ.
Proof.
split; intros H.
- exists A. eauto.
- destruct H as [B [HBIncl HBderiv]]. eapply Weak; first eassumption.
eauto.
Qed.
End Formula_facts.