Require Export Undecidability.FOL.Utils.FullSyntax.
Require Export Undecidability.FOL.Sets.Signatures.
Require Export Undecidability.FOL.Sets.ZF.
Import Vector.VectorNotations.
Require Import List.
Declare Scope syn.
Open Scope syn.
Import BinSig.
Import ZFSignature.
Export BinSig.
Export ZFSignature.
#[global]
Existing Instance ZF_pred_sig | 0.
#[global]
Existing Instance sig_empty | 0.
Notation "x ∈' y" := (atom sig_empty ZF_pred_sig elem ([x; y])) (at level 35) : syn.
Notation "x ≡' y" := (atom sig_empty ZF_pred_sig equal ([x; y])) (at level 35) : syn.
Fixpoint shift `{funcs_signature} `{preds_signature} n (t : term) :=
match n with
| O => t
| S n => subst_term ↑ (shift n t)
end.
Definition is_eset (t : term) :=
∀ ¬ ($0 ∈ t`[↑]).
Definition is_pair (x y t : term) :=
∀ $0 ∈ t`[↑] ↔ $0 ≡ x`[↑] ∨ $0 ≡ y`[↑].
Definition is_union (x t : term) :=
∀ $0 ∈ t`[↑] ↔ ∃ $0 ∈ shift 2 x ∧ $1 ∈ $0.
Definition sub' (x y : term) :=
∀ $0 ∈ x`[↑] → $0 ∈ y`[↑].
Definition is_power (x t : term) :=
∀ $0 ∈ t`[↑] ↔ sub' $0 x`[↑].
Definition is_sigma (x t : term) :=
∀ $0 ∈ t`[↑] ↔ $0 ∈ x`[↑] ∨ $0 ≡ x`[↑].
Definition is_inductive (t : term) :=
(∃ is_eset $0 ∧ $0 ∈ t`[↑]) ∧ ∀ $0 ∈ t`[↑] → (∃ is_sigma $1 $0 ∧ $0 ∈ shift 2 t).
Definition is_om (t : term) :=
is_inductive t ∧ ∀ is_inductive $0 → sub' t`[↑] $0.
Definition ax_ext' :=
∀ ∀ sub' $1 $0 → sub' $0 $1 → $1 ≡' $0.
Definition ax_eset' :=
∃ is_eset $0.
Definition ax_pair' :=
∀ ∀ ∃ is_pair $2 $1 $0.
Definition ax_union' :=
∀ ∃ is_union $1 $0.
Definition ax_power' :=
∀ ∃ is_power $1 $0.
Definition ax_om' :=
∃ is_om $0.
Definition ax_refl' :=
∀ $0 ≡' $0.
Definition ax_sym' :=
∀ ∀ $1 ≡' $0 → $0 ≡' $1.
Definition ax_trans' :=
∀ ∀ ∀ $2 ≡' $1 → $1 ≡' $0 → $2 ≡' $0.
Definition ax_eq_elem' :=
∀ ∀ ∀ ∀ $3 ≡' $1 → $2 ≡' $0 → $3 ∈' $2 → $1 ∈' $0.
Definition minZF' :=
ax_ext' :: ax_eset' :: ax_pair' :: ax_union' :: ax_power' :: ax_om' :: nil.
Definition minZFeq' :=
ax_refl' :: ax_sym' :: ax_trans' :: ax_eq_elem' :: minZF'.
Definition ax_sep' phi :=
∀ ∃ ∀ $0 ∈' $1 ↔ $0 ∈' $2 ∧ phi[$0.: Nat.add 3 >> var].
Definition fun_rel' phi :=
∀ ∀ ∀ phi[$2 .: $1 .: Nat.add 3 >> var] → phi[$2 .: $0 .: Nat.add 3 >> var] → $1 ≡' $0.
Definition ax_rep' phi :=
fun_rel' phi → ∀ ∃ ∀ $0 ∈' $1 ↔ ∃ $0 ∈' $3 ∧ phi[$0 .: $1 .: Nat.add 4 >> var].
Inductive minZ : form -> Prop :=
| minZ_base phi : In phi minZF' -> minZ phi
| minZ_sep phi : minZ (ax_sep' phi).
Inductive minZeq : form -> Prop :=
| minZeq_base phi : In phi minZFeq' -> minZeq phi
| minZeq_sep phi : minZeq (ax_sep' phi).
Inductive minZF : form -> Prop :=
| minZF_base phi : In phi minZF' -> minZF phi
| minZF_sep phi : minZF (ax_sep' phi)
| minZF_rep phi : minZF (ax_rep' phi).
Inductive minZFeq : form -> Prop :=
| minZFeq_base phi : In phi minZFeq' -> minZFeq phi
| minZFeq_sep phi : minZFeq (ax_sep' phi)
| minZFeq_rep phi : minZFeq (ax_rep' phi).