Require Import List.
From Undecidability.Shared.Libs.DLW
Require Import Vec.pos Vec.vec Code.sss.
Set Implicit Arguments.
Inductive mm_instr (X : Set) : Set :=
| mm_inc : X -> mm_instr X
| mm_dec : X -> nat -> mm_instr X
.
Arguments mm_inc {_}.
Arguments mm_dec {_}.
Notation INC := mm_inc.
Notation DEC := mm_dec.
Notation INCₐ := mm_inc.
Notation DECₐ := mm_dec.
Section Minsky_Machine.
Variable (n : nat).
Definition mm_state := (nat*vec nat n)%type.
Local Notation "e #> x" := (vec_pos e x).
Local Notation "e [ x := v ]" := (vec_change e x v) (no associativity, at level 50).
Local Reserved Notation "P // e ▷ v" (at level 50, no associativity).
Inductive eval : nat * list (mm_instr (pos n)) -> mm_state -> mm_state -> Prop :=
| eval_mm_out i P c v :
c < i \/ i + length P <= c ->
(i,P) // (c, v) ▷ (c, v)
| eval_mm_inc i P c v j c' v' :
c >= i -> nth_error P (c - i) = Some (INC j) ->
(i, P) // (c + 1, v[j := (v #> j) + 1]) ▷ (c', v') ->
(i,P) // (c, v) ▷ (c', v')
| eval_mm_dec_S i P c v j c1 c' v' l :
c >= i -> nth_error P (c - i) = Some (DEC j c1) ->
v #> j = S l -> (i, P) // (c +1, v [j := l]) ▷ (c',v') ->
(i,P) // (c, v) ▷ (c', v')
| eval_mm_dec_empty i P c v j c1 c' v' :
c >= i -> nth_error P (c - i) = Some (DEC j c1) ->
v #> j = 0 -> (i, P) // (c1, v) ▷ (c',v') ->
(i,P) // (c, v) ▷ (c', v')
where "P // e ▷ v" := (eval P e v).
End Minsky_Machine.
Definition MM_PROBLEM := { n : nat & { P : list (mm_instr (pos n)) & vec nat n } }.
Definition Halt_MM (P : MM_PROBLEM) :=
match P with existT _ n (existT _ P v) => exists c v', eval (1, P) (1, v) (c, v') end.
Import ListNotations Vector.VectorNotations.
Definition MM_computable {k} (R : Vector.t nat k -> nat -> Prop) :=
exists n : nat, exists P : list (mm_instr (Fin.t (1 + k + n))),
forall v : Vector.t nat k,
(forall m, R v m <->
exists c v', @MM.eval (1 + k + n) (1, P) (1, (0 :: v) ++ Vector.const 0 n) (c, m :: v')).