Require Import Arith Lia List Permutation.
Require Cantor.
Import ListNotations.
Require Import Undecidability.SetConstraints.FMsetC.
Require Import Undecidability.SetConstraints.Util.Facts.
Require Undecidability.DiophantineConstraints.H10C.
Import H10C (H10UC_SAT).
Require Import Undecidability.Synthetic.Definitions.
Require Import ssreflect ssrbool ssrfun.
Set Default Goal Selector "!".
Local Notation "A ≡ B" := (mset_eq A B) (at level 65).
Local Notation "A ~p B" := (Permutation A B) (at level 65).
Module H10UC_FMsetTC.
Inductive mset_term : Set :=
| mset_term_zero : mset_term
| mset_term_var : nat -> mset_term
| mset_term_plus : mset_term -> mset_term -> mset_term
| mset_term_h : mset_term -> mset_term.
Definition constraint : Set := mset_term * mset_term.
Fixpoint mset_sem (φ : nat -> list nat) (A : mset_term) : list nat :=
match A with
| mset_term_zero => [0]
| mset_term_var x => φ x
| mset_term_plus A B => (mset_sem φ A) ++ (mset_sem φ B)
| mset_term_h A => map S (mset_sem φ A)
end.
Definition mset_sat (φ : nat -> list nat) (l : list constraint) :=
Forall (fun '(A, B) => Permutation (mset_sem φ A) (mset_sem φ B)) l.
Definition FMsetTC_SAT (l: list constraint) :=
exists (φ : nat -> list nat), mset_sat φ l.
Module Argument.
Local Notation "t ⊍ u" := (mset_term_plus t u) (at level 40).
Local Notation "'h' t" := (mset_term_h t) (at level 38).
Local Notation "•0" := mset_term_zero.
Local Coercion mset_term_var : nat >-> mset_term.
Definition eval p A := list_sum (map (Nat.pow p) A).
Lemma eval_eq {p A B} : A ~p B -> eval p A = eval p B.
Proof.
elim: A B. { by move=> ? /Permutation_nil ->. }
move=> a A IH B /[dup] /(Permutation_in a) /(_ (in_eq _ _)).
move=> /(@in_split nat) [B1 [B2 ->]].
move=> /(@Permutation_cons_app_inv nat) /IH.
rewrite /eval !map_app !list_sum_app /=. lia.
Qed.
Lemma eval_monotone {p q A} : p < q -> eval p A < eval q A \/ Forall (fun a => 0 = a) A.
Proof.
move=> Hpq. elim: A; first by right.
rewrite /eval. move=> [|n] A [IH|IH].
- left => /=. lia.
- right. by constructor.
- left. have := Nat.pow_lt_mono_l p q (S n) (Nat.neq_succ_0 n) Hpq.
move=> /=. lia.
- left. have := Nat.pow_lt_mono_l p q (S n) (Nat.neq_succ_0 n) Hpq.
move=> /= ?.
have -> : list_sum (map (Nat.pow p) A) = list_sum (map (Nat.pow q) A).
{ elim: A IH; first done.
by move=> m A IH /Forall_cons_iff [<- /IH] /= ->. }
by lia.
Qed.
Lemma nat_spec {n A B C} :
(map S B) ++ A ~p [n] ++ B ++ B ++ B ++ B ->
(map S (map S C)) ++ A ~p [2*n] ++ C ++ C ++ C ++ C ->
Forall (fun a => 0 = a) A.
Proof.
have eval_map p' A' : eval p' (map S A') = p' * eval p' A'.
{ rewrite /eval. elim: A'; first done.
move=> > /= ->. by nia. }
move=> /(eval_eq (p := 4)) + /(eval_eq (p := 2)).
rewrite /eval !map_app !list_sum_app -!/(eval _ _) !eval_map.
have -> : eval 2 [2 * n] = eval 4 [n].
{ have := Nat.pow_mul_r 2 2 n. rewrite /eval /=. lia. }
move=> ??.
have : not (eval 2 A < eval 4 A) by lia.
by have /(eval_monotone (A := A)) [] : 2 < 4 by lia.
Qed.
Fixpoint tower m n :=
match n with
| 0 => []
| S n => (tower m n) ++ (tower m n) ++ (tower m n) ++ (tower m n) ++ [m*n]
end.
Lemma nat_sat {m n} :
(map (fun i => m + i) (tower m n)) ++ (repeat 0 (4^n)) ~p [m*n] ++ (tower m n) ++ (tower m n) ++ (tower m n) ++ (tower m n).
Proof.
elim: n; first by rewrite Nat.mul_0_r.
move=> n IH /=. rewrite ?map_app ?repeat_app /= app_nil_r.
pose L := (map (fun i => m + i) (tower m n)) ++ (repeat 0 (4^n)).
pose R := [m*n] ++ (tower m n) ++ (tower m n) ++ (tower m n) ++ (tower m n).
have -> : m + m * n = m * (S n) by nia.
apply: (Permutation_trans (l' := (L ++ L ++ L ++ L) ++ [m * S n])).
{ rewrite /L. by Permutation_trivial. }
apply /Permutation_sym /(Permutation_elt [] _ _ []).
rewrite /L IH. by Permutation_trivial.
Qed.
Lemma seq_spec2 {d A B} : A ++ B ~p [0] ++ (map (fun i => (S d) + i) A) ->
exists n, A ~p map (fun i => (S d) * i) (seq 0 n) /\ B = [(S d) * n].
Proof.
suff : forall k, A ++ B ~p [(1+d) * k] ++ (map (fun i => (1 + d) + i) A) ->
A ~p map (fun i => (1+d) * i) (seq k (length A)) /\ B = [(1+d) * (k + length A)].
{ have ->: [0] = [(1+d) * 0] by (congr cons; lia).
move=> /[apply] ?. by exists (length A). }
move=> k. elim /(Nat.measure_induction _ (@length nat)) : A k => A IH k H.
move: (H) => /Permutation_length. rewrite ?app_length map_length /= => HAB.
have [b Hb] : exists b, B = [b].
{ move: (B) HAB => [|? [|? ?]] /=; [ by lia | by eexists | by lia ]. }
subst B.
move: (H) => /Permutation_sym /(Permutation_in ((1 + d) * k)) /(_ (in_eq _ _)) /in_app_iff [].
- move /(@in_split nat) => [A1 [A2 ?]]. subst A.
have := IH (A1 ++ A2). apply: unnest.
{ rewrite ?app_length /=. by lia. }
move=> /(_ (1+k)). apply: unnest.
{ move: H. rewrite !map_app /= -!app_assoc /=.
move=> /Permutation_sym /(@Permutation_cons_app_inv nat) <-.
have -> : S (k + d * S k) = S (d + (k + d * k)) by lia.
by apply /Permutation_sym /Permutation_middle. }
move=> {IH} [IH ->]. constructor.
+ have ->: length (A1 ++ (1 + d) * k :: A2) = 1 + length (A1 ++ A2).
{ rewrite ?app_length /=. by lia. }
rewrite /= -IH. by apply /Permutation_sym /Permutation_middle.
+ congr cons. rewrite !app_length /=. by lia.
- case; last done. move=> ?. subst b.
move: H => /Permutation_sym /(Permutation_cons_app_inv _ [] (A := nat)).
rewrite app_nil_r.
move=> /Permutation_map_lt_nil ->; first by lia.
constructor=> /=; first done.
congr cons. by lia.
Qed.
Lemma seq_sat2 {d n} :
let A n := map (fun i => (S d) * i) (seq 0 n) in
(A n) ++ [(S d) * n] ~p [0] ++ (map (fun i => (S d) + i) (A n)).
Proof.
move=> A. elim: n. { apply: Permutation_refl'. congr cons. by lia. }
move=> n IH.
rewrite /A seq_last ?map_app -/(A n) /(map _ [n]) IH.
have ->: S d * S n = S d + S d * n by lia.
by Permutation_trivial.
Qed.
Lemma seq_sat1 {n} :
(seq 0 n) ++ [n] ~p [0] ++ (map S (seq 0 n)).
Proof.
have -> : S = (fun i => (S 0) + i) by done.
have -> : seq 0 n = map (fun i => (S 0) * i) (seq 0 n).
{ elim: (seq 0 n); first done.
move=> ??? /=. rewrite Nat.add_0_r. by congr cons. }
have -> : [n] = [1*n] by (congr cons; lia).
by apply: seq_sat2.
Qed.
Definition unify_sat n :
{A | A ++ (map (fun i => 2*i) (seq 0 n)) ~p (seq 0 n) ++ map S A}.
Proof.
elim: n; first by exists [].
set f := (fun i => 2*i). move=> n [A HA]. exists (A ++ seq n n).
rewrite ?seq_last ?map_app /=.
apply: (Permutation_trans (l' := (A ++ map f (seq 0 n)) ++ (seq n n ++ [f n]))).
{ by Permutation_trivial. }
apply: (Permutation_trans _ (l' := (seq 0 n ++ map S A) ++ ([n] ++ map S (seq n n)))); first last.
{ by Permutation_trivial. }
have ->: f n = n + n by (rewrite /f; lia).
by rewrite HA /f seq_shift -seq_last.
Qed.
Definition embed '(x, y, z) := Cantor.to_nat (Cantor.to_nat (x, y), z).
Definition unembed n := let (xy, z) := Cantor.of_nat n in
(Cantor.of_nat xy, z).
Lemma embed_unembed {xyz} : unembed (embed xyz) = xyz.
Proof.
case: xyz. case. move=> >.
by rewrite /embed /unembed ?Cantor.cancel_of_to.
Qed.
Opaque embed unembed.
Definition encode_bound (x: nat): list constraint :=
let X n := embed (x, n, 0) in
[
((X 1) ⊍ (X 2), •0 ⊍ (h (X 1)));
((X 3) ⊍ (X 4), •0 ⊍ (h (h (X 3))));
((X 5) ⊍ (X 3), (X 1) ⊍ (h (X 5)));
((h (X 6)) ⊍ (X 0), (X 2) ⊍ ((X 6) ⊍ ((X 6) ⊍ ((X 6) ⊍ (X 6)))));
((h (h (X 7))) ⊍ (X 0), (X 4) ⊍ ((X 7) ⊍ ((X 7) ⊍ ((X 7) ⊍ (X 7)))))
].
Definition encode_bound_spec {φ x} : mset_sat φ (encode_bound x) ->
Forall (fun a => 0 = a) (φ (embed (x, 0, 0))).
Proof.
rewrite /encode_bound /mset_sat !Forall_cons_iff Forall_nil_iff /mset_sem.
have -> (A) : map S (map S A) = map (fun i => (S 1) + i) A by rewrite map_map.
have -> : map S = map [eta Nat.add 1] by done.
move=> [/seq_spec2 [n [-> ->]]].
move=> [/seq_spec2 [m [-> ->]]].
move=> [/Permutation_length]. rewrite !app_length !map_length !seq_length => ?.
have <- : n = m by lia. clear.
have -> : 1 * n = n by lia.
move=> [H1 [H2 _]]. by apply: nat_spec; eassumption.
Qed.
Definition pyramid n := flat_map (seq 0) (seq 0 n).
Definition construct_valuation (φ: nat -> nat) (n: nat): list nat :=
match unembed n with
| (x, 0, 0) => repeat 0 (4^(φ x))
| (x, 1, 0) => seq 0 (φ x)
| (x, 2, 0) => [(φ x)]
| (x, 3, 0) => map (fun i => 2*i) (seq 0 (φ x))
| (x, 4, 0) => [2*(φ x)]
| (x, 5, 0) => proj1_sig (unify_sat (φ x))
| (x, 6, 0) => tower 1 (φ x)
| (x, 7, 0) => tower 2 (φ x)
| (x, 0, 1) => repeat 0 (φ x)
| (x, 1, 1) => repeat 0 (length (pyramid (φ x)))
| (x, 2, 1) => repeat 0 (4^(φ x) - (φ x))
| (x, 3, 1) => repeat 0 (4^(φ x) - (length (pyramid (φ x))))
| (x, 4, 1) => seq 0 (φ x)
| (x, 5, 1) => [(φ x)]
| (x, 6, 1) => pyramid (φ x)
| (x, 7, 1) => flat_map pyramid (seq 0 (φ x))
| _ => []
end.
Lemma encode_bound_sat {φ x} :
mset_sat (construct_valuation φ) (encode_bound x).
Proof.
rewrite /encode_bound /mset_sat !Forall_cons_iff Forall_nil_iff /mset_sem.
rewrite /construct_valuation ? embed_unembed.
pose A d n := map (fun i => (S d) * i) (seq 0 n).
constructor; first by apply: seq_sat1.
constructor.
{ have -> (X) : map S (map S X) = map (fun i => 2+i) X by rewrite map_map.
by apply: seq_sat2. }
constructor; first by apply: proj2_sig (unify_sat _).
constructor.
{ have -> (n): [n] = [1*n] by rewrite Nat.mul_1_l.
by apply: nat_sat. }
constructor; [|done].
rewrite map_map. by apply: nat_sat.
Qed.
Definition encode_nat (x: nat) : list constraint :=
let X n := embed (x, n, 1) in
[
(X 0 ⊍ X 2, mset_term_var (embed (x, 0, 0)));
(X 1 ⊍ X 3, mset_term_var (embed (x, 0, 0)));
(X 4 ⊍ X 5, •0 ⊍ (h (X 4)));
(X 4 ⊍ X 6, X 0 ⊍ (h (X 6)));
(X 6 ⊍ X 7, X 1 ⊍ (h (X 7)))
].
Lemma square_spec_aux {n m A C} : C ++ (n :: A) ~p (repeat 0 (S m)) ++ (map S A) ->
exists A', A ~p (seq 0 n) ++ A' /\ C ++ A' ~p (repeat 0 m) ++ (map S A').
Proof.
elim: n A.
{ move=> A /= /Permutation_sym /(@Permutation_cons_app_inv nat) /Permutation_sym H.
by exists A. }
move=> n IH A /[dup] /(Permutation_in (S n)).
apply: unnest. { apply /in_app_iff => /=. tauto. }
case /in_app_iff. { by move=> /(@repeat_spec nat). }
move=> /in_map_iff [?] [[->]] /(@in_split nat) [A1 [A2 ?]]. subst A.
move=> /(Permutation_trans _ (l := S n :: (C ++ (n :: (A1 ++ A2))))).
apply: unnest. { by Permutation_trivial. }
move=> /Permutation_sym /(Permutation_trans _ (l := S n :: ((repeat 0 (S m)) ++ map S (A1 ++ A2)))).
apply: unnest. { rewrite !map_app /=. by Permutation_trivial. }
move=> /Permutation_sym /(@Permutation_cons_inv nat) /IH [A' [? ?]].
exists A'. constructor; last done.
rewrite seq_last -app_assoc. by apply: Permutation_elt.
Qed.
Lemma square_spec {n A} : (seq 0 n) ++ A ~p (repeat 0 n) ++ (map S A) ->
length A + length A + n = n * n.
Proof.
elim: n A.
{ move=> A /Permutation_sym /Permutation_map_lt_nil ->; by [|lia]. }
move=> n IH A. rewrite seq_last.
rewrite -app_assoc.
move=> /square_spec_aux [A' [/Permutation_length + /IH]].
rewrite app_length seq_length. by lia.
Qed.
Lemma encode_nat_spec {φ x} : mset_sat φ (encode_bound x) -> mset_sat φ (encode_nat x) ->
length (φ (embed (x, 1, 1))) + length (φ (embed (x, 1, 1))) + length (φ (embed (x, 0, 1))) =
length (φ (embed (x, 0, 1))) * length (φ (embed (x, 0, 1))).
Proof.
move /encode_bound_spec. rewrite /mset_sat /encode_nat ?Forall_cons_iff Forall_nil_iff /mset_sem.
pose X n := φ (embed (x, n, 1)). rewrite -?/(X _).
move=> /(@Forall_eq_repeat nat) ->. move: (length (φ _)) => m.
move=> [/(Permutation_repeat 0) H1] [/(Permutation_repeat 0) H2].
have -> : map S (X 4) = map [eta Init.Nat.add 1] (X 4) by done.
move=> [/seq_spec2 [n]].
rewrite (map_ext (Nat.mul 1) id); [lia|]. rewrite map_id.
move=> [->] _ [].
have -> : X 0 = repeat 0 (length (X 0)).
{ elim: (X 0) (m) H1; [done|].
move=> ?? /= IH [|m'] /=; [done|].
move=> [-> /IH] ->. by rewrite repeat_length. }
move=> /[dup] H3. rewrite repeat_length.
have -> : length (X 0) = n.
{ move: H3 => /Permutation_length. rewrite !app_length map_length seq_length repeat_length. by lia. }
move=> /square_spec <- [/Permutation_length]. rewrite !app_length map_length. by lia.
Qed.
Lemma pyramid_shuffle {n} : seq 0 n ++ pyramid n ~p repeat 0 n ++ map S (pyramid n).
Proof.
elim: n; first done.
move=> n IH.
rewrite /pyramid seq_last /plus flat_map_concat_map map_app concat_app.
rewrite -flat_map_concat_map -/(pyramid _) ? map_app /= ? app_nil_r seq_shift.
apply: (Permutation_trans (l' := (seq 0 n ++ [n]) ++ (seq 0 n ++ pyramid n))).
{ by Permutation_trivial. }
rewrite IH -seq_last /=.
by Permutation_trivial.
Qed.
Lemma pyramid_length n : n + length (pyramid n) <= 4 ^ n.
Proof.
elim: n; first by (move=> /=; lia).
move=> n IH.
rewrite /pyramid seq_last /plus -/plus flat_map_concat_map map_app concat_app app_length.
rewrite -flat_map_concat_map -/(pyramid _).
rewrite /map /concat app_length seq_length /=.
have := Nat.pow_gt_lin_r 4 n.
by lia.
Qed.
Lemma encode_nat_sat_aux {n} :
pyramid n ++ flat_map pyramid (seq 0 n) ~p repeat 0 (length (pyramid n)) ++ (map S (flat_map pyramid (seq 0 n))).
Proof.
elim: n; first done.
move=> n IH.
rewrite /pyramid ? seq_last /plus ? (flat_map_concat_map, map_app, concat_app, app_length).
rewrite -?flat_map_concat_map -/pyramid -/(pyramid _) ?repeat_app seq_length /= ?app_nil_r.
apply: (Permutation_trans (l' := (pyramid n ++ flat_map pyramid (seq 0 n)) ++ (seq 0 n ++ pyramid n))).
{ by Permutation_trivial. }
rewrite pyramid_shuffle IH.
by Permutation_trivial.
Qed.
Lemma encode_nat_sat {φ x} :
mset_sat (construct_valuation φ) (encode_nat x).
Proof.
rewrite /encode_nat /mset_sat !Forall_cons_iff Forall_nil_iff /mset_sem /construct_valuation ?embed_unembed.
rewrite -?repeat_app.
constructor.
{ apply: Permutation_refl'. congr repeat. have := pyramid_length (φ x). by lia. }
constructor.
{ apply: Permutation_refl'. congr repeat. have := pyramid_length (φ x). by lia. }
constructor; first by apply: seq_sat1.
constructor; first by apply: pyramid_shuffle.
constructor; last done.
by apply: encode_nat_sat_aux.
Qed.
Definition encode_constraint x y z :=
encode_bound x ++ encode_bound y ++ encode_bound z ++
encode_nat x ++ encode_nat y ++ encode_nat z ++
let x := embed (x, 0, 1) in
let yy := embed (y, 1, 1) in
let y := embed (y, 0, 1) in
let z := embed (z, 0, 1) in
[ (•0 ⊍ x ⊍ yy ⊍ yy ⊍ y, mset_term_var z) ].
Lemma encode_constraint_spec {φ x y z} :
mset_sat φ (encode_constraint x y z) ->
1 + length (φ (embed (x, 0, 1))) + length(φ (embed (y, 0, 1))) * length(φ (embed (y, 0, 1))) = length(φ (embed (z, 0, 1))).
Proof.
rewrite /encode_constraint /mset_sat ?Forall_app -?/(mset_sat _ _).
move=> [Hx [Hy [Hz]]].
move=> [/(encode_nat_spec Hx) ? [/(encode_nat_spec Hy) ? [/(encode_nat_spec Hz) ?]]].
rewrite /mset_sat Forall_cons_iff Forall_nil_iff /mset_sem.
move=> [/Permutation_length]. rewrite ? app_length /=. by lia.
Qed.
Lemma encode_constraint_sat {φ x y z} :
1 + (φ x) + (φ y) * (φ y) = (φ z) -> mset_sat (construct_valuation φ) (encode_constraint x y z).
Proof.
move=> Hxyz.
rewrite /encode_constraint /mset_sat ?Forall_app -?/(mset_sat _ _).
do 3 (constructor; first by apply: encode_bound_sat).
do 3 (constructor; first by apply: encode_nat_sat).
constructor; last done.
rewrite /mset_sem /construct_valuation ? embed_unembed.
have ->: [0] = repeat 0 1 by done.
rewrite -?repeat_app. apply: Permutation_refl'. congr repeat.
move: Hxyz=> <-. clear.
elim: (φ y); clear; first by (move=> /=; lia).
move=> φy IH.
rewrite /pyramid seq_last /(plus 0 _) flat_map_concat_map map_app concat_app.
rewrite -flat_map_concat_map -/(pyramid _) /= ?app_length seq_length /=. by lia.
Qed.
Definition encode_h10uc '(x, y, z) := encode_constraint x y z.
End Argument.
Theorem reduction : H10UC_SAT ⪯ FMsetTC_SAT.
Proof.
exists (fun h10ucs => flat_map Argument.encode_h10uc h10ucs).
move=> h10ucs. constructor.
- move=> [φ Hφ].
exists (Argument.construct_valuation φ).
elim: h10ucs Hφ; first by constructor.
move=> [[x y] z] h10cs IH.
move /Forall_forall. rewrite Forall_cons_iff. move=> [Hxyz /Forall_forall /IH].
move=> {}IH. apply /Forall_app. constructor; last done.
by apply: Argument.encode_constraint_sat.
- move=> [φ] Hφ.
pose ψ := (fun x => length (φ (Argument.embed (x, 0, 1)))).
exists ψ. rewrite -Forall_forall.
elim: h10ucs Hφ; first done.
move=> [[x y] z] h10ucs IH.
rewrite /flat_map -/(flat_map _) /mset_sat Forall_app /(Argument.encode_h10uc _).
move=> [/Argument.encode_constraint_spec Hxyz /IH ?].
by constructor.
Qed.
End H10UC_FMsetTC.
Module FMsetTC_FMsetC.
Import H10UC_FMsetTC.
Module Argument.
Opaque Cantor.to_nat Cantor.of_nat.
Fixpoint term_to_nat (t: mset_term) : nat :=
match t with
| mset_term_zero => 1 + Cantor.to_nat (0, 0)
| mset_term_var x => 1 + Cantor.to_nat (0, 1+x)
| mset_term_plus t u => 1 + Cantor.to_nat (1 + term_to_nat t, 1 + term_to_nat u)
| mset_term_h t => 1 + Cantor.to_nat (1 + term_to_nat t, 0)
end.
Fixpoint nat_to_term' (k: nat) (n: nat) : mset_term :=
match k with
| 0 => mset_term_zero
| S k =>
match n with
| 0 => mset_term_zero
| S n =>
match Cantor.of_nat n with
| (0, 0) => mset_term_zero
| (0, S x) => mset_term_var x
| (S nt, 0) => mset_term_h (nat_to_term' k nt)
| (S nt, S nu) => mset_term_plus (nat_to_term' k nt) (nat_to_term' k nu)
end
end
end.
Definition nat_to_term (n: nat) : mset_term := nat_to_term' (1+n) n.
Lemma nat_term_cancel {t} : nat_to_term (term_to_nat t) = t.
Proof.
rewrite /nat_to_term.
move Hk: (k in nat_to_term' (1 + k) _) => k.
have : term_to_nat t <= k by lia.
elim: t k {Hk}.
- done.
- move=> x k /=. by rewrite Cantor.cancel_of_to.
- move=> nt IHt nu IHu k /=.
rewrite Cantor.cancel_of_to => ?.
have ? := Cantor.to_nat_non_decreasing (S (term_to_nat nt)) (S (term_to_nat nu)).
have -> : k = S (k - 1) by lia.
rewrite IHt; first by lia. by rewrite IHu; first by lia.
- move=> nt IH k /=. rewrite Cantor.cancel_of_to => ?.
have ? := Cantor.to_nat_non_decreasing (S (term_to_nat nt)) 0.
have -> : k = S (k - 1) by lia.
by rewrite IH; first by lia.
Qed.
Lemma term_to_nat_pos t : term_to_nat t = S (Nat.pred (term_to_nat t)).
Proof. by case: t. Qed.
Opaque nat_to_term term_to_nat.
Fixpoint term_to_msetcs (t: mset_term) : list msetc :=
match t with
| mset_term_zero => [msetc_zero (term_to_nat t)]
| mset_term_var x => []
| mset_term_plus u v =>
[msetc_sum (term_to_nat t) (term_to_nat u) (term_to_nat v)] ++
(term_to_msetcs u) ++ (term_to_msetcs v)
| mset_term_h u =>
[msetc_h (term_to_nat t) (term_to_nat u)] ++ (term_to_msetcs u)
end.
Definition encode_eq (t u: mset_term) :=
[(msetc_sum 0 0 0);
(msetc_sum (term_to_nat t) 0 (term_to_nat u))].
Definition encode_problem (msetcs : list constraint) : list msetc :=
flat_map (fun '(t, u) => (encode_eq t u) ++ term_to_msetcs t ++ term_to_msetcs u) msetcs.
Lemma completeness {l} : FMsetTC_SAT l -> FMsetC_SAT (encode_problem l).
Proof.
move=> [φ] Hφ.
pose ψ x := if x is 0 then [] else mset_sem φ (nat_to_term x).
have H'ψ (A) : ψ (term_to_nat A) = mset_sem φ A.
{ by rewrite /ψ nat_term_cancel term_to_nat_pos. }
have Hψ (A) : Forall (msetc_sem ψ) (term_to_msetcs A).
{ elim: A.
- by constructor.
- by rewrite /term_to_msetcs.
- move=> A IHA B IHB /=. constructor; last by apply /Forall_app.
by rewrite /msetc_sem !H'ψ.
- move=> A IH /=. constructor; last done.
by rewrite /msetc_sem !H'ψ. }
exists ψ.
rewrite -Forall_forall /encode_problem Forall_flat_map.
apply: Forall_impl; last eassumption.
move=> [A B] HφAB. apply /Forall_app.
split; last by apply /Forall_app.
constructor; [done|constructor;[|done]].
rewrite /msetc_sem !H'ψ. by apply /Permutation_count_occ.
Qed.
Lemma soundness {l} : FMsetC_SAT (encode_problem l) -> FMsetTC_SAT l.
Proof.
move=> [ψ]. rewrite -Forall_forall Forall_flat_map => Hψ.
pose φ x := ψ (term_to_nat (mset_term_var x)).
exists φ.
apply: Forall_impl; last by eassumption.
move=> [t u] /Forall_app [/Forall_cons_iff [+] /Forall_cons_iff [+ _]] /Forall_app [] => /=.
move=> /Permutation_count_occ /(Permutation_app_inv_r _ []) /Permutation_nil -> /=.
move=> /Permutation_count_occ Hψtu.
have Hφ (s) : Forall (msetc_sem ψ) (term_to_msetcs s) -> Permutation (mset_sem φ s) (ψ (term_to_nat s)).
{ clear. elim: s.
- by move=> /Forall_cons_iff /= [] /Permutation_count_occ ->.
- done.
- move=> t IHt u IHu /= /Forall_cons_iff /= [/Permutation_count_occ ->].
by move=> /Forall_app [/IHt -> /IHu ->].
- move=> t IH /= /Forall_cons_iff /= [/Permutation_count_occ ->].
by move=> /IH /Permutation_map. }
by move=> /Hφ -> /Hφ ->.
Qed.
End Argument.
Theorem reduction : FMsetTC_SAT ⪯ FMsetC_SAT.
Proof.
exists Argument.encode_problem.
move=> cs. constructor.
- exact Argument.completeness.
- exact Argument.soundness.
Qed.
End FMsetTC_FMsetC.
Theorem reduction : H10UC_SAT ⪯ FMsetC_SAT.
Proof.
have [f Hf] := H10UC_FMsetTC.reduction.
have [g Hg] := FMsetTC_FMsetC.reduction.
exists (fun x => g (f x)) => ?. by rewrite Hf Hg.
Qed.